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Impacts of climate change on sub-regional
electricity demand and distribution in the
southern United States
Melissa R. Allen1*, Steven J. Fernandez2, Joshua S. Fu2,3 and MohammedM. Olama1

High average temperatures lead to high regional electricity demand for cooling buildings, and large populations generally
require more aggregate electricity than smaller ones do. Thus, future global climate and population changes will present
regional infrastructure challenges regarding changing electricity demand. However, without spatially explicit representation of
this demand or theways inwhich itmight change at the neighbourhood scale, it is di�cult to determinewhich electricity service
areas are most vulnerable and will be most a�ected by these changes. Here we show that detailed projections of changing
local electricity demand patterns are viable and important for adaptation planning at the urban level in a changing climate.
Employing high-resolution and spatially explicit tools, we find that electricity demand increases caused by temperature rise
have the greatest impact over the next 40 years in areas serving small populations, and that large population influx stresses
any a�ected service area, especially during peak demand.

C limate change modelling predicts rising temperatures
and consequent increases in storm intensity, flooding
and inundation. This poses risks to infrastructure and

neighbourhoods as well as disruptions to the energy supply and
its dependent infrastructure. Direct effects have already included
damage to power plants, roads, bridges and communication towers,
and resultant interruption of electrical energy, transportation and
communications sectors in cities1. As climate conditions continue
to change, local communities and their critical infrastructure
will respond, adapt and evolve. Population will shift in response
to these changes2,3, for example, as services that generate new
economic activity in more environmentally stable locations will
attract new workers and associated households. This shift will
force demand locations for electricity to change. As a result,
networked infrastructures may be required to accommodate new
load centres and to minimize vulnerability to natural disasters4.
To provide information about the complex interactions among
climatic conditions, population shifts, and energy supply and use,
new tools informed by consistent spatially disaggregated data
are needed5.

Although a recent report began to quantify increases in electricity
demand based on regional warming6, little research has been
conducted to quantify the potential impacts of combined climate
and population stresses on the operating limits of electrical
substations within the power grid. There are two main reasons for
this gap. First, until recently, climate projections at high enough
resolution to be compatible with infrastructuremodelling have been
unavailable. Second, spatially explicit population migration data
and analysis techniques capable of providing estimates of future
energy demand have been missing and/or difficult to characterize.

Previous research has predicted increases in electricity demand
in response to increases in global temperature expected with

climate change. For instance, using the Electricity Information
(EIA) National Energy Modelling System, Hadley et al.7 showed
that for most US locations, the savings of electricity in the
winter months due to fewer cooling degree days do not offset
the added expenditures on electricity in the summer for the
increase in heating degree days. The climate inputs used in the
Hadley study, however, were global model output at 2.5◦ (latitude,
longitude) spatial resolution, so while the study was able to
capture electricity customer response to some general trends in
future temperature, it was unable to resolve regional differences
in temperature in both base and future cases. To improve on
such predictions, the California Energy Commission8 employed
a constructed analogues method for statistically downscaling
global climate model output at coarse spatial resolution (2.5◦) to
finer (∼13 km) resolution, using analogues from present regional
climate. With this method, along with electricity utility billing data,
and demographic information, they made projections regarding
increases in residential electricity use.

Although much research regarding population movement has
been performed and weaknesses in various methods identified,
none of the methods has been applied to the assessment of
changes in electricity demand due to spatially explicit changes in
population. It has been noted9 that the growth of every small
area is linked to causes and forces located elsewhere in the
region and by demographic and economic interactions; thus, the
process of regional growth and resulting electricity demand changes
is hard to characterize. Yet strides have been made in relating
population changes to changes in electricity demand. A variety
of commercial models for forecasting electric load based on land
use projections have been used to generate scenarios for long-
range planning. Among the first were linear urban models based
on a gravity model for population movement10 and generalized
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Figure 1 | Per cent substation capacity used by customer service areas in the year 2011. Substation areas are estimated by a cost–distance algorithm that
allocates electricity customers to substations on the basis of population density and distance from the station. a,b, Darker colours indicate a higher
percentage of substation capacity for either average (a) or peak (b) instantaneous demand by customers. The percentage is based on known substation
capacity and disaggregated annual state consumption. Peak demand for 2011 is determined on the basis of peak-to-average demand ratios reported by the
Electric Reliability Council of Texas (ERCOT) and the Southeastern Reliability Council (SERC). Calculation details are in the Methods.

to a set of matrix computations11. While these models take
into consideration the projected development of various types of
electricity customer (residential, commercial, industrial), they do
less well at predicting the ways in which redevelopment of land use
will occur. Therefore, the US Geological Survey12, Duke Energy13
and the California Energy Commission14, among others, have
expanded such models to incorporate economic and demographic
weights for the determination of various redevelopment types
using agent-based modelling. For each of these models, the critical
components are those of the spatial distribution of the population
among their places of residence and their places of business,
and the way changes in those distributions are projected for the
future. However, these models do not evaluate electricity usage by

customers as organized within utility service areas or how service
area organization might change as a result of new urbanization.

Vulnerability of the electric grid to climate impacts is ultimately
a function of its exposure, its sensitivity and its adaptive capacity
to stress15. Thus, in this study we examine human response to
exposure to changes in regional temperature16 and increases in
landfall hurricane intensity7,17,18, and electrical grid sensitivity to
these human- and climate-induced stresses. We employ a spatial
methodology for electric load forecasting for grid planning in which
a cost–distance algorithm based on regional population is used
to determine the service area for a given substation. We apply
satellite population observations and predictions based on Census
and Internal Revenue Service (IRS) data to project spatial shifts in
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Figure 2 | Per cent of substation capacity of average electricity demand by service area in 2030. Here, we take a closer look at service areas in the state of
Texas. Highlighted are those service areas in the sparsely populated counties of Je� Davis, Presidio, Menard, Mason, Kimble and Atascosa (county
boundaries indicated in red) that show greater than 80% of substation capacity needed for average instantaneous demand. This situation is due to
increases in population in these sparsely populated regions.

electricity demand in the southernUS region (Supplementary Fig. 1)
and we incorporate several sudden redistributions of population in
response to a 2005-like hurricane season at the predicted return
period for such events in the region based on recent climate science.
We also calculate local percentage change in electricity demand
given temperature changes from dynamically downscaled (12 km
resolution) climate model projections for the region to analyse
further the effect of increases in global temperature and resulting
regional electricity demand consequences. From this analysis,
we make a substation-service-area-level projection of substation
capability in the southern US to support changes in demand due
to temperature rise and sudden population shifts in response to
intense storms. This procedure allows us to demonstrate a viable tool
for making high-resolution predictions in the absence of address-
specific data regarding electricity use.

Demand change with temperature and population change
The focus of our study was to develop amethodology for forecasting
high-resolution temperature- and population-related electricity
demand increases that may challenge electricity distribution
capacity in specific locations Thus, to account for changes in
electricity use as a result of changes in population, we use
as a first input to the methodology the LandScan19,20 high-
resolution (1 km) satellite-observation-informed population data

for average 24-h population locations. We next apply customer
correction factors21 to these totals to aggregate the population
to households and firms that represent electricity customers.
Finally, we use a cost–distance algorithm to determine electricity
customer service areas at the neighbourhood scale for the 2011
population distribution (described in the Methods). To project
future customer service areas and demand, we apply these
methods to the LandCast22 population projections (which used
cohort-component and appropriate land use predictions and
included methods for modelling suitability, service area planning,
consequence assessment, mitigation planning and implementation,
and assessment of vulnerable populations) to provide reasonable
future service areas and planning scenarios. United States Census
and other23 county-level population distribution projections for
future years do not factor in environmental stresses caused by
climate change (for example, increases in intensity of extreme
weather events such as storms), and recent studies have shown
not only that significant numbers of people have migrated away
from locations affected by extreme storms, but also that these
migrations have caused large changes in electricity consumption
by counties of both origin (decrease) and destination (increase).
Thus, in this study we investigate the impacts of further population
redistribution on location-specific electricity demand by including
in those projections an adjustment for a 2005-type hurricane season
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Figure 3 | Per cent of substation capacity of peak electricity demand by service area in the 2050s. Again, we focus on the state of Texas because it is in
service areas in this state that we see the most change in demand versus substation capacity due to changes in population as a result of typical projected
growth and migration, and to migration away from areas a�ected by a 2005-like hurricane. In this scenario, counties such as Dickens, King, Kent,
Stonewall, Childress, Cottle and Hardeman (county boundaries indicated in red), which operated at much less than 50% capacity for average demand in
2030, operate at between 50% and 80% capacity during peak demand in the 2050s. More service areas in western Texas see demand above 80%
capacity for the same reasons.

applied at a hypothetical 20-year return period for such a season3–5,25.
To simulate this impact, we apply by-county migration rates from
2005–2006 and 2006–2007 to the study region as a hurricane
migration component (Supplementary Note 1).

Note that the authors do not attribute hurricanes Katrina,
Rita and Wilma to climate change, but use these events as an
example scenario to show population changes that could occur
under extreme storm circumstances along the US Gulf Coast (a
situation that could occur more often in the future due to predicted
increases in intensity of storms), and how these circumstancesmight
be represented in a methodology for predicting these changes. (It
should also be noted that the largest environmental population
redistributions are projected to occur in the least developed
countries because those with the most robust economies are more
likely to have the means to rebuild26.)

Recognizing that increased electricity demand in response to
rising temperatures has been well established by the utility industry
and has a latitudinal dependence14,27,28, we calculate the percentage
increase in electricity demand for a service area due to temperature
rise according to a formulation27 derived from empirical data for the
latitudes spanning the state of California. (Although the California
datamay not provide a direct latitude temperature correlation to the
more humid southern US29, California’s constituent climate zones

follow a similar latitudinal progression to those in the southern US
region28.) While the constructed analogues statistical downscaling
method used in the California Energy Commission study8 provided
enhanced information regarding regional temperature projections,
statistical methods tend to be limited by available historical data and
past trends. As inputs to these formulae, we instead use results from
the Weather Research and Forecasting (WRF) model30 dynamically
downscaled (12 km resolution) from the Community Climate
System Model, Version 4 (CCSM4) three-hourly Coupled Model
Intercomparison Project, Phase 5 (CMIP5) ensemble member’s
projections (worst case scenario, Representative Concentration
Pathway (RCP) 8.5).

Results from dynamical downscaling methods tend to be more
physically, chemically and temporally robust than those of statistical
methods because they take into account changes in atmospheric
composition and dynamics at small time steps and geographical
terrain at small spatial scales, and can follow the non-stationary and
evolving climate trends of initial and boundary conditions provided
by global model physics. However, there is a range of predictive
uncertainty for all variables in the large-scale global models31,
and further uncertainty in dynamically downscaled results32,33.
We note that CCSM4’s output has a slightly-low temperature
bias31, and that WRF output tends toward a high bias for
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temperature32. That said, this combination of global and regional
model has produced historical results in relatively good agreement
with the extreme temperature observations for the representative
locations in the southern US states considered here (Supplementary
Table 1).

New demand map for the southern United States
Projections of future energy capacity and use are made by the EIA
for each National Energy Reliability Council (NERC) region for
each year from 2011 through 204034. However, these predictions
have been unable to identify specific locations of future stresses
where local demandmay exceed the peak load of substation capacity
causing, in extreme climate cases, potential for blackouts. The EIA
predicts that each NERC region will sustain a demand between
40–50% of the generating capacity available for each region34. Our
results improve on these predictions by showing current and future
potential vulnerabilities at representative service area locations for
individual substations, and demand-to-capacity what-if scenarios
for sudden population shifts resulting from storm-drivenmigration.
Additionally, we show the local impact on electricity demand of an
overall rise in temperature.

To establish a baseline for these predictions, we first generated a
demand map for the southern United States using a cost–distance
function (discussed in the Methods) based on the spatial pattern
of the location of the population in relation to the electricity
substations in service. We then determined the fraction of capacity
of the substations that is used on average by customers in a service
area assuming per capita usage consistent with the EIA 2011 state
average35. Figure 1a shows the results of this calculation for average
customer demand. Additionally, because it is in the interest of
electricity providers to retain enough capacity to serve customers
during peak demand hours, we also produced a baseline map that
shows the fraction of capacity used for peak demand in 2011 (Fig. 1b,
calculation of peak demand described in the Methods). The maps
show that if service areas were distributed as the cost–distance
function suggests, there would be several service areas in the state
of Texas that are operating at 80% or greater substation capacity.
The number of these areas increases with the added demand for
peak hours.

Next, using the LandCast spatially explicit population projections
for the years 2030 and 2050, the same cost–distance function
to determine substation service area was applied to allocate the
projected populations to the substations. Assuming similar per
capita demand to that in 2010, new demand versus capacity was
evaluated for years 2030 and 2050 based solely on population growth
and redistribution (2030 results are shown in Fig. 2). With this
step we show that typical population growth and migration causes
little stress to the existing electric grid because such adaptations
can be applied in a timely manner even with no additional
substation capacity.

A variety of service area locations in Fig. 2 show average demand-
to-capacity ratios above 80% including one spanning the sparsely
populated Texas counties of Menard, Kimble and Mason; one in
Atascosa County, south of San Antonio; and several in the western
Texas counties of Jeff Davis and Presidio, both sparsely populated.
In peak demand situations, these areas show even larger percentages
in demand versus capacity. This result is due in part to the very
low substation capacity in these areas. In the case of the substations
in northwest Presidio county and in Atascosa county, in which
substations hold more than one transmission line connection, the
grid becomes even more vulnerable when overall demand spikes36.

For the decades of both the 2030s and the 2050s, the population
distribution effects of a 2005-type hurricane season were simulated
on the basis of the rates of in- and out-migration in the IRS
data for 2005–2006 and 2006–2007 (procedure described in
Supplementary Note 1), and results for peak demand in the 2050s

Table 1 | Percentage increase in demand from2011 to 2030and
2050 due to increase in July maximum temperature.

2030 2050

State Minimum MaximumMean Minimum Maximum Mean
Texas 4.1 12.1 8.3 8.7 43.1 25.3
Louisiana 6.5 13.7 9.5 10.5 35.8 20.7
Oklahoma 2.9 8.2 5.3 21.3 44.7 33.1
Arkansas 2.9 8.2 6.2 21.3 44.7 33.1
Mississippi 5.1 12.0 7.5 17.2 34.2 24.0
Alabama 4.5 10.2 6.5 11.5 35.4 22.5
Georgia 3.4 9.8 5.7 5.9 24.2 18.1
Tennessee 4.8 8.2 6.5 6.0 31.4 18.1
Florida 6.5 11.6 8.6 −2.5 31.8 12.5
∗Minimum, maximum and mean values among the service areas in each state are shown.

for two years following the hurricane season were calculated using
the extrapolated peak-to-average demand ratios described in the
Methods (Fig. 3). Here it is assumed that for each county, the
approximate ratio of population to the total of residences and firms
is maintained from 2011. (In reality, these ratios would change
with changes in incoming/outgoing population demographics and
incoming/outgoing firm types over time.)When population growth
and shifts due to hurricane displacement are taken into account,
service areas in the Texas counties ofDickens, King, Kent, Stonewall,
Childress, Cottle and Hardeman operate at between 50 and 80%
capacity during peak demand.

Finally, calculations for increase in electricity demand due
to increases in highest July temperature predictions were made
(detailed in the Methods). The differences in highest July
temperature from 2004–2057 in each of the (sub-county) service
areas (found by assigning to each service area the average of
the temperature in the grid cells that fall within a service area)
are normally distributed and range from −0.4 to 9.2 ◦C. These
differences in summer high temperatures have a large impact on
electricity demand37, as can be seen in Table 1, and strain available
capacity at peak demand. This is seen most prominently in the
service areas identified in Fig. 3 as having substations operating
at 50–80% capacity during peak load. As the temperature rises,
the average demand on these substations increases to over 80%
of capacity.

Figure 4 shows the demand difference due to temperature
change, population growth and population movement for the
2050s with two hurricane displacements applied. This figure was
created by taking the difference in each spatial location of the
percentage demand of substation capacity calculated for 2050s
and that calculated for the 2011 base case. Service areas with
large decreases in demand located next to service areas with large
increases in demand are shown for several service areas in locations
of low population inTexas.Within themore densely populated areas
of Texas—Dallas, San Antonio and Houston—there is little change
in percentage demand of capacity. Sparsely populated locations in
Oklahoma, Mississippi, Alabama, Tennessee, Georgia and Florida
show up to 10% increases in projected demand. Only one small
service area in the centre of Arkansas shows an increase in demand.
All of these results are likely to be due primarily to the combination
of low-capacity substations and the pattern of population growth
projected for those regions, although some of the increase is
explained by increases in maximum temperature.

Discussion
The use of high-resolution population distribution data and
dynamically downscaled climate projections with electricity
demand modelling provides an improved method for identifying
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Figure 4 | Di�erence in demand percentage of capacity, 2052–2011. With changes in temperature due to climate change in addition to migration, large
changes in electricity demand as compared with substation capacity are evident throughout the southern US. The largest changes are seen in service areas
serving smaller populations in Texas, with adjacent service areas seeing di�erences larger than±50%.

specific locations of electrical grid vulnerability to increased
electricity demand due to regional temperature changes, and
to large population shifts. Using a representative data set of
12 km dynamically downscaled RCP 8.5 (worst case) temperature
projections and business-as-usual population projections, with
an added hurricane migration component, our results show that
electricity demand increases due to temperature change are slightly
less than those due to large population influx into a service area,
but that in the areas most affected, and especially at peak demand,
the grid will be stressed. It is also evident that some sections of
the national electrical grid are more adaptable to population shifts
and changing demand than other sections are; and that detailed
projections of changing local electricity demand patterns are
important for planning at the urban level. Until this time, however,
it was an open question whether these population shifts could be
modelled with realistic coupling to climate forecasts.

The findings from this study show that new population
data enabled by high-resolution imagery analysis not previously
available at this scale (1 km) can be operationalized for planning
professionals. A long-standing challenge has been helping thosewho
project new grid networks of critical infrastructures to understand
implications of climate events by accessing, displaying and using
newly available data and coupledmodels. Themodels of geographic
distribution of projected electric power demand grow increasingly
unrealistic if based only on current assets. These planners at
regional utilities often are charged with reorganizing substation
service areas, capacity upgrades to existing substations, and adding
and removing substations as the grid evolves in response to
changing demand. This study also illustrates that analysts and
modellers should add population movements as a component to be
modelled when projecting future infrastructure climactic stresses.
For some neighbourhoods, the population shifts motivated by
economic opportunity dominate ambient environmental stresses

to engineered infrastructure. The data support the feasibility of
exploring different scenarios and assumptions within a population–
climate coupled system. Additionally, as more highly resolved data
become available, further analysis using this methodology can yield
more detailed results for future planning.

Projecting other factors and system changes continues to be
a challenge. Some factors continue to create difficulties such as
projecting technological change and institutional change. Thus, the
research community should continue to plan efforts to depict a
range of changes in socioeconomic conditions through time (for
example, using shared socioeconomic pathways38) and their impacts
on demand for resources, just as climate scenarios (RCPs) based
on anthropogenic forcing depict a range of changes in future
climate conditions.

Methods
Electricity supply and demand data sources. Data sets used for the
determination of changes in electricity demand due to changes in population
include substation location and measured capacity (data from Ventyx corporation
included in the layers developed for the Homeland Security Infrastructure
Program (HSIP) in 2013) LandScan population data sets for 201119,20 and
projections for 2030 and 205022; EIA State Energy Data System35 state-by-state
total annual electricity consumption records for 2011 and the Annual Energy
Outlook (2013) predictions to 2040; and IRS39 data sets for by-county in- and
out-migration for the years 2004–2007.

Spatially explicit population data and projections. The 2011 LandScan2,19 data
set is built using a dasymetric mapping approach in which a source layer is
converted to a surface and multiple ancillary indicator data layers are used to
derive density level values for input to a weighting scheme that allocates
population to 1 km grid cells. The source data layer surface comprises the
subnational level census counts. Ancillary data sets include primary geospatial
data such as land cover, roads, slope, urban areas, village locations and
high-resolution imagery analysis; all of which are key indicators of population
distribution. Calculation of error in the data set is made by imagery analysts

6

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE ENERGY | www.nature.com/natureenergy

http://dx.doi.org/10.1038/nenergy.2016.103
www.nature.com/natureenergy


NATURE ENERGY DOI: 10.1038/NENERGY.2016.103 ARTICLES
using high-resolution imagery to create a set of population likelihood coefficient
modifications to correct or limit input data anomalies. Population projections for
2030 and 2050 are made in a similar manner, but also incorporate
cohort-component and urbanization projections as outlined by the US Census22.
However, as uncertainty is intrinsic in all population predictions, and especially
those for small geographic units, we note the uncertainty in these projections as
well. Results from a comparison of predictions made using the LandCast
methodology from the 2000 Census report to the 2010 Census report showed
that county-level predictions were overestimated by as much as 3.72%. This
discrepancy is partially explained by the fact that the LandCast predictions were
only ‘business as usual’ and did not take into account migration due to natural
disaster (for example, 2005 hurricane season) or economic downturn (for
example, Detroit from 2005) during that decade. An example of anticipated
changes in population density for mid century is shown in Supplementary Fig. 2.
Projections indicate overall population growth along with movement away from
rural areas and larger concentrations in cities and suburbs.

Average customer demand per service area. To determine the amount of stress
placed on substation capacity in an area and to estimate the service area for each
substation based on its location and its capacity, we used a two step process:
convert LandScan population count to customer count21; and employ a
cost–distance algorithm40 to allocate customers to the substations most likely to
serve them.

For each county, a customer correction factor was obtained by adding
together the number of households and the number of firms within the county as
given by the US Census for the year 2000, and then dividing the total population
in the county for that year by this sum21. To convert the population in a given
1 km cell to customers, then, the population was divided by the customer
correction factor. While this calculation does not represent a perfect relationship
between population and customers, in that it does not account for the differences
in electricity use characteristics among residential, industrial and commercial
customers (nor the change in number of residences and firms through time), it
does offer a simple means for disaggregating average use across all sectors with a
representative case.

The cost–distance algorithm40 employed compares cost units to geographical
units to determine the maximum distance to customers served. In this approach,
the lower the demand, the higher the cost, and the greater the transmission
distance, the greater the cost.

To project the total average customer instantaneous demand per service area
for the future, we take as a base average per-customer demand value the total
consumption in gigawatt hours per year per state divided by the number of
customers in the state and then further divided by the number of seconds in a
year (365.25 × 24 × 3,600) and multiply by 1,000 to convert gigawatts to
megawatts. Once the average customer instantaneous demand is calculated, we
calculate the total customer demand per substation service area by multiplying
this value by the number of customers within the service area. Substation
capacity for a service area is estimated using measurements of the instantaneous
aggregate peak load (real and reactive power) at the substation for a typical
summer day to obtain the instantaneous aggregate apparent power at each
substation and assuming that it is approximately 80% of the total capacity.

Determining service areas for the substations. The service areas are determined
using a cost–distance algorithm within a Geographic Information Systems (GIS)
framework. The service area cost is computed with the following equation, where
P is the population of a given 1 km cell in the LandScan data set,

∑
is the sum

of the population in a study region and S is the capacity sum of the substations in
the region. Study regions are bounded by North American Electricity Reliability
Corporation (NERC) sub-region borders. The historical electricity consumption
data on which we calibrated the base case were given at county and state levels,
however, so GIS spatial joining was used to map demand to each derived
service area.

Dinv=
1

P∑
P
×S

(1)

Geographical cells are allocated to a given substation on the basis of the lowest
accumulated cost to reach the source from the cell. Accumulated cost is
calculated as the sum of two values: c1 is the average of Dinv for the starting cell
and the ending cell; and c2 is the average of Dinv for the starting cell and the
midpoint cell (Supplementary Fig. 3).

For diagonal transmission distance travelled, distance between cells increases
to the length of the diagonal, in this case,

√
2=1.414, so each average value is

multiplied by this amount. Cells that contain the substations, or source cells, are
given a Dinv value of 0. Since no Dinv calculation can be made from the ‘no data’
cells, these cells act as barriers to the movement of the allocation process. Cost
allocation is performed as an iterative process beginning with the cost evaluation
of the source cell, and then extending to the eight neighbouring cells of the

source cell (Supplementary Fig. 4). For each concentric square of cells, the cells
that help form the least cost path outward from the source are added to the
service area of the source. Changing of allocated cells is possible, for instance, if a
new, cheaper route is found by adjusting choices on inner squares to access less
expensive cells on outer squares. This process continues until all of the cells are
allocated, or an optional maximum distance threshold is met.

Substation capacity measurements and estimates. Substation capacities
(Supplementary Fig. 5) are estimated using measurements of the instantaneous
aggregate peak loads at substations for a typical summer day in the year of 2011
(proprietary data courtesy of the Tennessee Valley Authority (TVA) and
Electricity Reliability Council of Texas (ERCOT)). The measurements are load
real powers, P , in megawatt and load reactive powers, Q, in mega VAR (volt
ampere reactive). Then, the apparent power, AP, in mega volt ampere (MVA) for
each substation is computed as

AP=
√
(P2+Q2) (2)

and we assume that the substation peak apparent power in a typical summer day
is approximately 80% of the total substation capacity. In this case, the apparent
power values are multiplied by 1.25 to obtain an approximation for the total
substation capacities.

Peak customer demand per service area. For an electric utility company, peak
demand is defined as the single half-hour or hour-long period during which the
highest amount of customer consumption of electricity occurs. Since the amount
of electricity over a certain threshold must often be purchased from additional
providers during this time, the cost to provide that electricity can be much more
than that produced up to that threshold. Therefore, the utility companies calculate
a peak-to-average demand ratio to be used in assessing their own costs to provide
the electricity and the costs they pass on to the consumers. This amount is found
by relating the peak of the electricity use curve to the area underneath the curve.
Assuming Gaussian distribution and area A, the height of the peak is:

H= f (µ)=
A

σ
√
2π

e−(µ−µ)
2/2σ 2
=

0.3989A
σ

(3)

H
A
=

0.3989
σ

, σ=
FWHM
2.35

(4)

and FWHM (full-width at half-maximum) measured in the data from the
utility readings.

The peak-to-average demand ratios calculated by ERCOT and by SERC for
the years 1993–2012 are shown in Supplementary Figs 6 and 7. To these time
series, we fit a linear trend to project peak-to-average demand ratios for future
years, 2030 and 2050. With this information, we calculate peak demand for those
years for each of the states (ERCOT values for Texas, SERC values for the other
states) included in our southern study region. It should be understood that the
years 2030 and 2050 are only representative years for those decades, and thus a
more exact fit to the more cyclical nature of the peak-to-average demand ratios is
not necessarily required for the approximation.

Demand change in response to temperature rise. Increased electricity demand in
response to rising temperatures has been well established by the utility industry,
and it has a latitudinal dependence. The per cent increase in electricity demand
for a county due to temperature rise is calculated according to27

J= (5.33−0.067Lcentroid)×1T (5)

where J is per cent increase in electricity demand, Lcentroid is the latitude in
decimal degrees at the centroid of the county and 1T is the change in maximum
annual temperature in degrees Fahrenheit.

New demand as a result of this increase is calculated:

D=Dav×N×
(
1+

J
100

)
(6)

where D is the total demand for the study area, Dav is the average customer use
and N is the number of customers.

As temperature input to these formulae, we enter dynamically downscaled
historical and Representative Concentration Pathway scenarios (RCP 8.5) using
initial and boundary conditions generated by the Coupled Model
Intercomparison Project, Version 5 (CMIP5) ensemble member, Community
Earth System Model (CESM), at three-hour intervals for Weather Research and
Forecasting (WRF) domain simulations at 12 km resolution centred at 97◦W,
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40◦ N (ref. 30). The WRF 12 km data sets are then incorporated as dBASE file
tables into a GIS platform, projected to a common coordinate system (WGS84 as
in LandScan) and joined to additional energy and infrastructure layers (also
projected to WGS84). A simple analysis of variance comparison of daily
maximum temperatures from the National Climatic Data Center (NCDC)
observations and the 2001–2004 WRF-downscaled base case data set is shown in
Supplementary Table 1. Observation stations are Atlanta Hartsfield International
Airport, Louisiana State University Ben Hur Farm, Houston William P Hobby
Airport, Huntsville International Airport, Jackson International Airport, North
Little Rock Airport the Memphis Weather Forecast Office, Miami International
Airport and Tulsa International Airport, respectively. Daily maximum
temperature observations for Houston, Huntsville, Jackson and Little Rock match
the model output less well than those at the other stations, possibly because
urban/airport effects are not yet well captured in the WRF model. Supplementary
Figs 7–15 show raw data comparisons of modelled and measured data for each
location. While it is evident that the model captures the range of the
temperatures at each location and the seasonal trend, predictions for a specific
day of the year are not expected to be exact.

Hurricane intensity and frequency under climate change. Studies17,18 indicate
that increases in intensity of hurricanes will characterize the climate of the latter
half of the twenty-first century. Their calculation of power dissipation index for
2006–2100 shows an increase of 0.5 × 108 m3 s−2 in the Gulf Coast region. This
prediction upgrades tropical depressions, tropical storms and hurricanes as
outlined in Supplementary Table 2. In general, damage rises by about a factor of
four for every category increase41; thus, population stresses associated with
hurricanes are likely to increase with the increase in hurricane intensity.

Received 30 December 2015; accepted 16 June 2016;
published 25 July 2016
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