Assessing terrestrial biogeochemical feedbacks in a strategically geoengineered climate

To cite this article: Cheng-En Yang et al 2020 Environ. Res. Lett. 15 104043

View the article online for updates and enhancements.
Assessing terrestrial biogeochemical feedbacks in a strategically geoengineered climate

Cheng-En Yang1,2, Forrest M Hoffman1,2,\dagger, Daniel M Ricciuto3, Simone Tilmes4,5,\dagger, Lili Xia6,\dagger, Douglas G MacMartin7,\dagger, Ben Kravitz8,9,\dagger, Jadwiga H Richter5,\dagger, Michael Mills4,\dagger and Joshua S Fu1,2,\dagger

1Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
2Climate Change Science Institute and Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
3Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
4Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, United States of America
5Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States of America
6Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, United States of America
7Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, United States of America
8Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, United States of America
9Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, United States of America

\daggerE-mail: forrest@climatemodeling.org

Keywords: geoengineering, carbon cycle, terrestrial biogeochemical feedbacks

Supplementary material for this article is available online

Abstract
Geoengineering by injecting sulfur dioxide (SO$_2$) into the lower stratosphere has been suggested to reduce anthropogenically induced warming. While impacts of such geoengineering on climate have been investigated in recent decades, few modeling studies have considered biogeochemical feedbacks resulting from such intervention. This study comprehensively characterizes responses and feedbacks of terrestrial ecosystems, from an ensemble of coupled high-resolution Earth system model climate change simulations, under the highest standard greenhouse gas scenario with an extreme geoengineering mitigation strategy. Under this strategy, temperature increases beyond 2020 levels due to elevated anthropogenic carbon dioxide (CO$_2$) were completely offset by the SO$_2$ injection. Carbon cycle feedbacks can alter the trajectory of atmospheric CO$_2$ levels by storing or releasing additional carbon on land and in the ocean, thus moderating or amplifying climate change. We assess terrestrial biogeochemical feedbacks to climate in response to geoengineering, using model output from the Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project. Results indicate terrestrial ecosystems become a stronger carbon sink globally because of lower ecosystem respiration and diminished disturbance effects under geoengineering. An additional 79 Pg C would be stored on land by the end of the twenty-first century, yielding as much as a 4% reduction in atmospheric CO$_2$ mole fraction without marine biogeochemical feedbacks, compared to the high greenhouse gas scenario without geoengineering.

1. Introduction
Rising global mean surface temperature along with increasing anthropogenic greenhouse gas emissions have been observed since the last century (IPCC 2014), and future projections of increasing global mean surface temperature remain even if anthropogenic emissions are reduced (Steffen et al 2018). To prevent continued warming that could cause devastating damage to natural ecosystems and human socio-economic activities (Hoegh-Guldberg et al 2018), various climate intervention strategies, such as solar radiation management (SRM), have been proposed to offset the risks of warming (Crutzen 2006, Shepherd 2009). SRM includes various techniques—surface albedo approaches (e.g. brightening of human
The community Earth System Model (CESM) version 1 with the Whole Atmosphere Community Climate Model (WACCM) as its atmospheric component (Mills et al 2017), the Community Land Model version 4.5 with prescribed time-evolving distributions of vegetation consistent with RCP8.5 and interactive carbon and nitrogen cycles as the land component (Oleson et al 2013), the Los Alamos Sea Ice Model (Community Ice Code version 4) as the sea ice component (Hunke and Lipscomb 2008), and the Parallel Ocean Program version 2 as the ocean component (Danabasoglu et al 2012). SO2 was injected in the lower stratosphere at optimized locations to achieve the three temperature goals (Kravitz et al 2017) from 2020 to 2099 and to avoid overcooling of the tropics and undercooling of the poles that lead to continued Arctic summer sea ice loss (Moore et al 2014, Tilmes et al 2016). The large number of ensemble members, a longer simulation period, higher model grid resolutions, effects of sulfate aerosols on stratospheric chemistry, and a high anthropogenic emission scenario through the coupled CESM simulations enable GLENS to serve the needs of a more comprehensive examination of geoengineering impacts, including effects on atmospheric chemistry and land biogeochemical feedbacks to the Earth system. While the fully coupled GLENS simulation results have been used to investigate a wide variety of physical climate responses to aerosol geoengineering (e.g. Tilmes et al 2018, Fasullo et al 2018, Cheng et al 2019), the responses and feedbacks of terrestrial ecosystems to this geoengineered climate have not been evaluated. This study complements those as the first to comprehensively characterize the responses and feedbacks of terrestrial ecosystems to rapidly rising CO2 levels, producing strong CO2 fertilization responses, without significant changes in global mean surface temperature or consequent warming-induced changes in precipitation after 2020. Our results not only quantify the terrestrial BGC feedbacks in GLENS but also illustrate the importance of terrestrial ecosystems on future climate change in a strategically geoengineered climate.

2. Data and methods

2.1. Stratospheric aerosol geoengineering large ensemble (GLENS) dataset

GLENS has large ensemble member outputs from two experiments. The baseline experiment consists of a 20-member ensemble of simulations from 2010 to 2099 under the RCP8.5 emission scenario (Riahi et al 2011) used in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), with the first three ensembles simulated at least until the year 2097. Each member started from the same ocean state and differed by small perturbations to their initial atmospheric states. The geoengineering experiment followed the same design as the baseline experiment except for optimized SO2 injections along 180°E at 30°N, 15°N, 15°S, and 30°S in the lower stratosphere (25 km for 15° and 22.8 km for 30°) (Kravitz et al 2017) starting at year 2020. The SO2 injection rate was adjusted annually during 2020–2099, using a feedback algorithm that maintained global mean surface temperature, the interhemispheric surface temperature gradient, and the equator-to-pole surface temperature gradient at their 2020 levels (MacMartin
et al 2014, Kravitz et al 2016, 2017). Because only the first three (of 20) ensemble members in the baseline experiment were extended to at least year 2097, the first three ensemble members from the baseline experiment during 2010–2019 (called 'BASE' hereafter) and during 2020–2097 (called 'CTRL' hereafter), and the first three ensemble members from the geoengineering experiment during 2020–2097 (called 'GEOENG' hereafter) are analyzed to fairly compare the differences in climate and terrestrial biogeochemical feedbacks between the baseline and geoengineering experiments, as well as those differences with respect to the present climate. In this study, we apply the two-tailed Student’s t-test to evaluate if changes between two experiments are significant ($p < 0.1$). In performing the t-test, we properly adjusted for lag-one autocorrelation by computing an equivalent sample size that effectively decreases the number of degrees of freedom in determining the standard error of the mean for each of the time series (see supplementary information section 2 for details (available online at stacks.iop.org/ERL/15/104043/mmedia)).

Reported correlation coefficients for two variables from spatial maps of differences between experiments are evaluated using the linear Pearson’s correlation without removing the global mean (called uncentered), following the method described in IPCC (2001).

2.2. Ecoregions
We define 13 ecoregions in this study by clustering climate, soil, and topography information into regions that were fitted to the International Geosphere-Biosphere Programme (IGBP) ecoregion definitions (Townshend 1992, Hargrove and Hoffman 2004, Hargrove et al 2006) (figure 1). The terrestrial BGC feedbacks and responses of ecosystems to the climate with and without geoengineering are compared globally as well as over individual ecoregions.

2.3. Adjusted trajectories of atmospheric CO$_2$ and surface temperatures
The carbon budget in the terrestrial ecosystem can be expressed, according to the Intergovernmental Panel on Climate Change (Watson et al 2000) as

$$GPP = NPP + R_a = NEP + R_a + R_h$$

where GPP is the gross primary production, NPP the net primary production, R_a the autotrophic respiration, NEP the net ecosystem production, R_h the heterotrophic respiration, NBP the net biome production, and $disturbance$ includes anthropogenic emissions due to land cover and land use changes such as fires and crop harvest. In this study, GPP, NPP, NEP, NBP, R_a, and R_h are direct outputs from GLENS while $disturbance$ is estimated by subtracting NBP from NEP. Positive values for GPP, NPP, NEP, and NBP indicate carbon gains in land while negative values denote carbon losses to the atmosphere; contrarily, positive values for R_a and R_h represent carbon losses to the atmosphere and larger negative values imply more carbon remaining in land. We utilize NBP to examine the carbon storage in terrestrial ecosystems. A positive NBP value indicates atmospheric CO$_2$ is stored in the terrestrial ecosystem while a negative NBP value represents carbon releases from the terrestrial ecosystem to the atmosphere. A fixed ratio of 1:2.13 (Clark 1982, O’Hara 1990) is used in this study to convert the amount of carbon (unit: Pg C) released from or sequestered in the terrestrial ecosystem to the

![Ecoregions](image-url)
equivalent amount of airborne CO₂ mole fractions (unit: ppm).

Simulations in GLENS were driven by the atmospheric CO₂ mole fraction specified in the RCP8.5 emission scenario (Meinshausen et al. 2011, Riahi et al. 2011). The simulations were conducted with an active global land carbon cycle; however, the terrestrial BGC feedbacks were not incorporated into the coupled modeling system. In addition, the marine BGC feedbacks were excluded in the GLENS experiments. We assume the NBP variations are consistent with the atmospheric CO₂ for the CTRL experiment. Hence, differences in simulated NBP between GEOENG and CTRL are attributed to ecosystem responses due to SO₂ injections in the lower stratosphere. A positive value of these differences, i.e. a larger accumulated NBP in GEOENG than in CTRL indicates more carbon is stored from the atmosphere to land, thus the atmospheric CO₂ level is lowered; on the contrary, the atmospheric CO₂ level is higher when less carbon is sequestered in land due to lower accumulated NBP in GEOENG than in CTRL. To construct an adjusted atmospheric CO₂ trajectory that accounts for this feedback, we compute the adjusted CO₂ airborne mole fraction every year according to the equation

\[C_{t+1} = C_t + (F_{t+1} - F_t) + (B_t^{\text{GEOENG}} - B_t^{\text{CTRL}}) \]

where \(t \) is the time step, \(C \) the adjusted atmospheric CO₂ airborne mole fractions, \(F \) the atmospheric CO₂ airborne mole fractions obtained from GLENS outputs, and \(B \) the terrestrial BGC feedbacks from experiment GEOENG and CTRL. The changes in the atmospheric CO₂ trajectory alter the radiative forcing, resulting in a different surface temperature trajectory. The changes in surface temperatures due to atmospheric CO₂ adjustments are approximated through an impulse response function tuned to the mean of CMIP5 models (Boucher and Reddy 2008, Hoffman et al. 2014). We use this function to compute CO₂-induced radiative forcing changes and thus the associated temperature trajectory adjustments. Differences between the simulated global mean surface temperature in GLENS and the adjusted one are compared to estimate a reduced amount of SO₂ injection, with an injection rate of 10 Tg SO₂ per year for 1 K cooling (Tilmes et al. 2018).

3. Results and discussion

3.1. Global surface changes

Global mean surface temperatures are projected higher in CTRL than in BASE due to rising greenhouse gas levels as previously reported (IPCC 2014) (figure 2(a)). In GEOENG, slightly higher mean surface temperatures in the Sahara Desert and at mid-to-high latitudes compared to BASE (figure 2(b)) are compensated by lower surface temperatures in the central US, parts of South America, Central Asia, southern India, and eastern Australia. The global mean surface temperatures in GEOENG are lower compared to CTRL despite having the same greenhouse gas trajectories as a result of stratospheric aerosol injections (figure 2(c)). Higher precipitation rates are projected in most regions in CTRL than in BASE due to increased water vapor content in the lower troposphere and atmospheric circulation, both of which are induced by the increased temperature in the CTRL simulation (Collins et al. 2013); lower precipitation rates are simulated in the Amazon Basin, Chile and Argentina, Uruguay, western Congo, southern Africa, some southern parts of Europe, and Indonesia (figure 2(d)). The results are consistent with known features of projected climate change (IPCC 2014, Yu et al. 2016). The regions with lower precipitation rates in CTRL than in BASE, which include forests, croplands, and open shurblands (see figure 1), are influenced by changing atmospheric dynamics (Yoon and Zeng 2010) and physiological responses (Langenbrunner et al. 2019) along with enhanced direct solar radiation but reduced diffuse solar radiation (figures 2(g) and (j)). In GEOENG, cooler temperatures, reduced evaporanspiration, and aerosol-cloud interactions (suppressed precipitation due to the aerosol indirect effect (Albrecht 1989)) lead to a drier climate compared to BASE over the southern Sahel and South Africa, India, Southeast Asia, and parts of the boreal zone across Eurasia and northeastern North America (figure 2(e)). Global mean precipitation rates in GEOENG are generally smaller than that in CTRL (figure 2(f)) due to lower temperatures and induced suppression of precipitation, with the exception of the southern Amazon (evergreen broadleaf forests) (Langenbrunner et al. 2019) and semi-arid and monsoon regions (Tilmes et al. 2013), including the western U.S. (open shurblands), southern Africa (open shurblands), eastern Australia (open shurblands), southern Europe/northern Africa/western Asia (open shurblands/sparsely vegetated lands).

In terms of downward solar radiation at the surface, direct radiation is 109.4 ± 0.3 W m⁻² for BASE in 2019, 111.5 ± 1.0 W m⁻² for CTRL and 79.8 ± 1.2 W m⁻² for GEOENG in 2097; diffuse radiation is 61.6 ± 0.1 W m⁻² for BASE in 2019, 58.3 ± 0.4 W m⁻² for CTRL and 83.0 ± 0.8 W m⁻² for GEOENG in 2097. More direct radiation is projected in CTRL compared to BASE in most regions except for India, northern and central Africa, central South America, and the southeast US (figure 2(g)). Reductions in cloudiness (figure S1) are the primary explanation for such direct radiation changes (spatial correlation = −0.76), which is consistent with the results from Yu et al. (2016). Nevertheless, regions like northeast Australia experience increased downward direct radiation despite increasing cloudiness due to enhanced precipitation (figure 2(d)) that removes suspended aerosols from the atmosphere (i.e. reduced...
3.2. Global terrestrial biogeochemical responses

Photosynthesis rates (FPSN) and GPP for both CTRL and GEOENG substantially increase in most of the world because of rising atmospheric CO₂ levels with respect to BASE (figures 3(a), (b), (d), and (e)). At high latitudes, FPSN and GPP are lower in BASE and in GEOENG than in CTRL because higher surface temperatures in CTRL (figure 2(c)) thaw permafrost regions, lengthen growing seasons and enable enhanced photosynthesis (figures 3(a) and (c)). At mid and low latitudes, lower precipitation and less diffuse radiation in the Amazon Basin than in BASE (figures 3(a) and (d)). In addition, lower FPSN and GPP in India and central Africa, where land cover is dominated by croplands and savannas, are subjected to lower precipitation in BASE and in GEOENG than in CTRL (figures 2(d) and (f)). However, substantial FPSN and GPP increases in GEOENG with respect to CTRL are found in the southwestern U.S. (open shrublands), southern Amazon (woody savannas), France/Spain/northern Africa (croplands and open shrublands), southern Africa (open shrublands), central Russia (mixed forests), and eastern Australia (open shrublands) (figure 3(f)). Such increases in FPSN and GPP are associated with increased precipitation and soil moisture (see figure 2(f) and supplementary figure S5). While the projected spatial GPP patterns are consistent with previous studies (Kalidindi et al 2015, Tjiputra et al 2016, Dagon and Schrag 2019), different spatial patterns are found between FPSN and GPP across the Amazon Basin for changes between GEOENG and CTRL (figures 3(c) and (f)). Since the terrestrial nitrogen cycle has been suggested to be a critical factor for the carbon cycle response (Tjiputra et al 2016), we investigate the spatial pattern of net nitrogen mineralization (supplementary figure S6) and find that the inconsistent spatial patterns between FPSN and GPP are where net nitrogen mineralization is smaller in GEOENG than in CTRL. This is mainly because...
lower temperatures in GEOENG produce lower net nitrogen mineralization rates, reducing conversion of organic nitrogen to a plant-available inorganic form and hence downregulating photosynthesis.

Enhanced R_a in CTRL and in GEOENG with respect to BASE are caused by enhanced GPP, which is attributed to the CO$_2$ fertilization effect (see supplementary figure S7). Lower R_a in GEOENG than in CTRL is primarily caused by the cooler climate in GEOENG. NPP, which is determined by GPP and R_a (see equation (1)), increases in both CTRL and GEOENG compared to BASE (figures 3(g) and (h)). Stronger reductions in GPP than in R_a result in lower NPP in GEOENG with respect to CTRL (figure 3(i)). Like R_a, is sensitive to temperatures and GPP variations, R_b is sensitive to changes in temperature and the carbon amounts in litter and soil. Higher rates of GPP in CTRL and GEOENG compared to BASE drive higher rates of R_b because of larger litter inputs that also increased soil pools (see supplementary figure S8). Therefore, higher R_b is simulated in both CTRL and GEOENG compared to BASE in most regions (see supplementary figure S9). Nevertheless, regions with reduced precipitation and lower temperatures in GEOENG than in CTRL, such as the northern Amazon, undergo lower R_b and evapotranspiration rates in GEOENG, which in turn retains more water in soil due to stomatal closure in plants (Swann et al. 2016) (see supplementary figures S5 and S10).

The spatial patterns of NEP are determined by NPP and R_b. Both CTRL and GEOENG demonstrate enhanced NEP compared to BASE with the exception of North America. Higher NPP induces higher NEP in CTRL and in GEOENG with respect to BASE; however, stronger increases of R_b due to land use change and accelerated litter input than the increases of NPP in North America cause reduced NEP in both CTRL and GEOENG when compared to BASE (see supplementary figure S1). Similar to NPP, the cooler climate in GEOENG leads to lower NEP than that of CTRL. The variations of NEP and disturbance determine the perturbations of NBP, which represents the long-term and large-scale carbon uptake by ecosystems (see equation (1)). In GLENS outputs, disturbance is excluded in NEP but is included in NBP. Hence, differences in the spatial patterns between NBP and NEP illustrate the human and natural disturbances. In general, CTRL and GEOENG simulate enhanced NBP attributed to stronger GPP than in BASE (figures 3(j) and (k)); smaller NBP over North America in CTRL than in BASE is caused by increased carbon loss due to fires (see supplementary figures S12 and S13). Similarly, smaller burned area and lower carbon loss due to fires in GEOENG explain the enhanced NBP in North America, the boreal region of Eurasia, and the southeast coast of Australia with respect to CTRL (figure 3(l)).

3.3. Carbon sink strength and atmospheric CO$_2$ trajectory adjustments

The carbon sink strength (CSS) is determined by the accumulated NBP over a certain period of time. Table 1 lists the accumulated global carbon amount changes over various time periods for each carbon fluxes in
Table 1. Accumulated global climate change over various time periods. Numbers represent the mean and cross-ensemble standard deviation of the first three ensemble members for the BASE, CTRL, and GEOENG (abbreviated as GEOG). **PRECIP** and **ET** are precipitation and evapotranspiration (unit: mm day$^{-1}$), respectively, and the other variable annotations (unit: Pg C) are the same as equation (1). Positive values for **GPP**, **NPP**, **NEP**, and **NBP** indicate carbon gains in ecosystems while negative values represent carbon losses to the atmosphere; the opposite applies to R_a and R_h. Symbol ‘Δ’ denotes the differences of GEOENG − CTRL. The asterisk sign (*) indicates 2011–2019 cumulative sum.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BASE</td>
<td>CTRL</td>
<td>GEOG</td>
<td>Δ</td>
<td>CTRL</td>
</tr>
<tr>
<td>GPP</td>
<td>1153 ± 7</td>
<td>11085 ± 27</td>
<td>10271 ± 7</td>
<td>−813 ± 21</td>
<td>2497 ± 15</td>
</tr>
<tr>
<td>NPP</td>
<td>499 ± 3</td>
<td>4700 ± 8</td>
<td>4442 ± 3</td>
<td>−258 ± 5</td>
<td>1072 ± 4</td>
</tr>
<tr>
<td>NEP</td>
<td>51 ± 2</td>
<td>602 ± 2</td>
<td>585 ± 2</td>
<td>−17 ± 3</td>
<td>128 ± 1</td>
</tr>
<tr>
<td>NBP</td>
<td>4 ± 2*</td>
<td>198 ± 4</td>
<td>277 ± 3</td>
<td>79 ± 6</td>
<td>50 ± 1</td>
</tr>
<tr>
<td>R_a</td>
<td>654 ± 4</td>
<td>6385 ± 20</td>
<td>5830 ± 4</td>
<td>−555 ± 16</td>
<td>1425 ± 11</td>
</tr>
<tr>
<td>R_h</td>
<td>448 ± 2</td>
<td>4098 ± 6</td>
<td>3856 ± 2</td>
<td>−241 ± 4</td>
<td>944 ± 4</td>
</tr>
<tr>
<td>Disturbance</td>
<td>42 ± 1*</td>
<td>405 ± 2</td>
<td>308 ± 1</td>
<td>−96 ± 3</td>
<td>79 ± 1</td>
</tr>
<tr>
<td>PRECIP</td>
<td>24 ± 0</td>
<td>199 ± 0</td>
<td>184 ± 0</td>
<td>−15 ± 1</td>
<td>48 ± 0</td>
</tr>
<tr>
<td>ET</td>
<td>14 ± 0</td>
<td>120 ± 0</td>
<td>110 ± 0</td>
<td>−10 ± 0</td>
<td>29 ± 0</td>
</tr>
</tbody>
</table>

Positive values for **GPP**, **NPP**, **NEP**, and **NBP** indicate carbon gains in ecosystems while negative values represent carbon losses to the atmosphere; the opposite applies to R_a and R_h. Symbol ‘Δ’ denotes the differences of GEOENG − CTRL. The asterisk sign (*) indicates 2011–2019 cumulative sum.
equation (1). The terrestrial ecosystem has higher global total GPP primarily due to elevated CO₂ levels in both CTRL and GEOENG with respect to BASE. All the other terrestrial carbon fluxes except NBP in the terrestrial carbon budget (see equation (1)) are enhanced over time in both CTRL and GEOENG. Increases of GPP, NPP, NEP, R_a, and R_h in GEOENG are slower compared to CTRL because of lower temperatures and lower precipitation rates in GEOENG. Differences of accumulated NBP between GEOENG and CTRL show stronger CSS in GEOENG than in CTRL by 79 ± 6 Pg C at year 2097, increasing from 13 ± 2 Pg C during 2020–2039 to 30 ± 3 Pg C during 2078–2097. Such CSS enhancement is attributed primarily to reduced R_a and R_h, which leaves more carbon resident in land globally. Additionally, smaller carbon losses due to natural or anthropogenic disturbances (estimated by NEP−NBP) in GEOENG also indicate a larger land carbon reservoir.

For individual ecoregions, about 63% (125 ± 1 Pg C) of global NBP (198 ± 4 Pg C) in CTRL and 47% (130 ± 1 Pg C) of global NBP (277 ± 3 Pg C) in GEOENG during 2020–2097 are contained in evergreen broadleaf forests in tropical regions, which have the largest CSS among all ecoregions (see supplementary table S1). Nevertheless, the largest CSS differences (ΔCSS) between GEOENG and BASE are found in croplands and mixed forests (see supplementary figure S14). The former are responsible for 27% (22 ± 2 Pg C) and the latter for 25% (19 ± 0 Pg C) of the total ΔCSS (79 ± 6 Pg C) by 2097. Less heat stress due to lower temperatures in GEOENG than in CTRL is the main factor that increases crop yields (i.e. more carbon gains on land) in spite of lower precipitation (Proctor et al. 2018). Increases in ΔCSS are also simulated in all other vegetated ecoregions during 2020–2097, primarily as a result of reduced respiration rates. Most ecoregions in both CTRL and GEOENG undergo increasing CSS from 2020–2039 to 2050–2069 but declined CSS from 2050–2069 to 2078–2097. Land use changes due to forest clearing and conversions to agriculture in the RCP8.5 emission scenario are likely the cause of these CSS changes (Hurtt et al. 2011).

The changes in ΔCSS provide information to reconstruct the atmospheric CO₂ trajectory in GLENS experiments in which the same atmospheric CO₂ mole fractions based on the RCP8.5 emission scenario were used to drive the simulations. Even though carbon pools were simulated with an active terrestrial carbon cycle, terrestrial BGC feedbacks to the Earth system were not accounted for in the coupled modeling system. Such feedbacks can alter the carbon amount in the atmosphere, resulting in a

![Figure 4.](image-url)
different atmospheric CO₂ trajectory and hence climate change. Given the assumption that the land carbon fluxes in CTRL are consistent with the specified atmospheric CO₂ trajectory, we evaluate carbon gains on land as a result of aerosol geoengineering through comparing ΔCSS between GEOENG and CTRL (figure 4(a)). The global ΔCSS reaches 79 ± 6 Pg C by 2097. That is, terrestrial ecosystems globally store additional carbon in GEOENG compared to CTRL, amounting to 37 ± 3 ppm CO₂-equivalent, reducing the atmospheric CO₂ mole fraction by as much as 4% in 2097 (figure 4(b)). The reduced airborne fraction of anthropogenic carbon due to terrestrial BGC feedbacks is within the range reported in previous studies by the year 2100 despite different models and aerosol geoengineering strategies compared with GLENS (Keller et al 2014, Tjiputra et al 2016, Cao and Jiang 2017).

By accounting for the terrestrial BGC feedback, lower atmospheric CO₂ levels would induce a cooler global surface temperature in GEOENG compared to the prescribed CO₂ trajectory, differing by 0.14 K in 2097 (figure 4(c)). Hence, in order to maintain the global surface temperature at 2020-levels, less sulfur aerosol would have needed to be injected (approximately 1.4 Tg yr⁻¹ less at 2097) had we used prescribed emissions rather than prescribed concentrations in GLENS (figure 4(d)). In addition, the global carbon budget assessment indicates that annual anthropogenic carbon emissions are stored 31% in land, 23% in the ocean, and 46% in the atmosphere (Friedlingstein et al 2019). Thus, the atmospheric CO₂ trajectory, altered slowly by additional carbon uptake on land, would effectively reduce ocean carbon uptake, thereby partially compensating for the reductions in atmospheric CO₂ mole fraction. In general, marine CSS is enhanced in a cooler climate that maintains higher CO₂ solubility and stronger overturning circulation in oceans; however, increasing anthropogenic ocean acidification would likely mediate marine CSS due to its detrimental effects on calcifying biota (Orr et al 2005, Fabry et al 2008, Doney et al 2009, Gattuso et al 2015). While fully coupled emissions-forced simulations with interactive terrestrial and marine biogeochemistry are required to quantify competing feedback effects, we expect that temperature-induced reduction of the solubility pump in CTRL simulations would be responsible for stronger marine CSS in GEOENG simulations; however, over decadal timescales (out to 2100), we expect a smaller ocean feedback compared to the land feedback in GEOENG, consistent with other studies (Keller et al 2014, Cao and Jiang 2017).

4. Conclusion

This study characterizes responses and feedbacks of terrestrial ecosystems from an ensemble of coupled high-resolution Earth system model climate change simulations under a high greenhouse gas scenario with a geoengineering mitigation strategy that completely offsets temperature warming due to elevated anthropogenic CO₂. From the GLENS simulation results, we find that terrestrial ecosystems could store an additional 79 Pg C on land globally by the end of the twenty-first century due to SO₂ injections in the lower stratosphere. Such carbon gains on land are mainly attributed to lower ecosystem respiration and diminished disturbance effects under geoengineering. As a result, less geoengineering effort would be needed to maintain the global surface temperature at 2020-levels in GLENS. Since GLENS simulated with an active terrestrial carbon cycle but without marine BGC feedbacks, we suggest that conducting fully coupled and emissions-forced ESM simulations with both marine and terrestrial BGC feedbacks enabled, as well as including stratospheric and tropospheric chemistry, will be necessary to reduce the uncertainty in quantifying aerosol geoengineering impacts on the Earth system.

Acknowledgments

This research was supported by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation (RUBISCO) Science Focus Area (SFA), which is sponsored by the Regional and Global Model Analysis activity of the Earth & Environmental Systems Modeling Program in the Earth and Environmental Systems Sciences Division (EESSD) of the Office of Biological and Environmental Research (BER) in the US Department of Energy Office of Science. This research was also supported by the Oak Ridge National Laboratory Terrestrial Ecosystem Sciences (TES) SFA, sponsored by the Terrestrial Ecosystem Sciences program, which is also part of EESSD in BER in the US Department of Energy Office of Science. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725. Support for B.K. was provided in part by the National Science Foundation through agreement CBET-1931641, the Indiana University Environmental Resilience Institute, and the Prepared for Environmental Change Grand Challenge initiative. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. Support for L.X. was provided by the National Science Foundation grant AGS-1617844. The CESM project is supported primarily by the National Science Foundation (NSF). This material is based work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative

Prepared for Environmental Change Grand Challenge initiative. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. Support for L.X. was provided by the National Science Foundation grant AGS-1617844. The CESM project is supported primarily by the National Science Foundation (NSF). This material is based work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative
Agreement No. 1852977. Computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), provided by the Computational and Information Systems Laboratory (CISL) at NCAR. All simulations were carried out on the Cheyenne high-performance computing platform https://www2.cisl.ucar.edu/user-support/acknowledging-ncar and are available to the community via the Earth System Grid.

Contributions
C-EY performed the analysis, generated graphical results, and prepared the manuscript in consultation with FH, JF, LX, and DR. FH provided impulse response function calculations. ST, DM, JR, MM, BK were the core team conducting the model simulations in GLENS. All authors contributed to group discussions and manuscript revisions.

Conflict of interests
The authors declare no competing interests.

Data availability statement
The data that support the findings of this study are openly available at the following URL/DOI: https://doi.org/10.5065/D6fH3JXX.

Code availability
All figures were generated using the NCAR Command Language version 6.6.2 (available at https://doi.org/10.5065/D6WD3XH5) and OriginPro version 2019b (available at www.originlab.com). Scripts used in this study are available on request from cyang10@vols.utk.edu.

ORCID iDs
Joshua S Fu ⋆ https://orcid.org/0000-0001-5464-9225

References
Albrecht B A 1989 Aerosols, cloud microphysics, and fractional cloudiness Science 245 1227–30
Cao I and Jiang J 2017 Simulated effect of carbon cycle feedback on climate response to solar geoengineering Geophys. Res. Lett. 44 12,484–12,491
Dagon K and Schrag D P 2019 Quantifying the effects of solar geoengineering on vegetation Clim. Change 153 235–51
Gattuso J-P et al 2015 Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios Science 349 aac4722
Hoegh-Guldberg O et al 2018 Impacts of 1.5°C global warming on natural and human systems Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of...