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SUMMARY 

Low-income households have experienced increased energy burdens and 
inaccess to healthcare services during the COVID-19 pandemic, which has limited 
their ability to practice social distancing and stay-at-home orders. Here, we show 
that a households’ inability to adopt social distancing due to constraints in utility 
and healthcare expenditure drastically impacts the course of disease outbreak in 
five U.S. counties. Low-income households shoulder greater burdens of disease 
and death than other households, while functioning as a consistent source of 
exposure to higher income households. Health interventions combining social 
distancing and resource protection strategies (e.g., utility access and healthcare) 
were the most effective in limiting the spread of COVID-19. Additionally, 
resource protection strategies tailored to alleviate utilities and financial 
constraints for low-income households can protect the whole population. Current 
policies need to address the multidimensionality of energy burdens, housing 
environment, and public health. The findings also imply methods for future 
disaster management.    

COVID-19, low income, energy burden, energy justice, energy insecurity, stay-at-
home orders, social distancing, utility cost 

INTRODUCTION 
The broader impacts of energy insecurity and burdens on household environments 
are related to mental and physical health 1–4, which is a serious situation during the 
COVID-19 pandemic 5–8; for example, anxiety, stress, and depression are associated 
with living in poor housing conditions 9–11. Energy insecurity is defined as households’ 
inability to meet basic energy needs 3,7, while energy burden is generally measured 
by the inability to pay for utility bills 12. Certain socioeconomic groups, including low-
income, senior, non-white, and renter households, and those without a full-time job, 
spend significantly higher percentages of their income on energy costs than other 
groups. Households that experience intense energy burdens often have to make a 
fundamental trade-off between health-supportive resources like medicine or 
healthcare to afford utilities, such as water, gas, and electricity 6,12–14. This situation has 
adverse effects on individual and family health, especially for households at or below 
the poverty line, where marginal increases in household expenditure on necessities 
can compromise the ability to seek basic medical care 15. Therefore, the narrative of 

Context & Scale 
This study demonstrates 
how household economic 
constraints of utility and 
health expenditure may 
affect a county’s ability to 
effectively enact pandemic 
mitigation policies. The 
findings suggest that the 
security of household 
utilities is necessary to 
support household health 
and safety. Additionally, a 
county’s social interaction 
rates and health 
infrastructure accessibility 
significantly impacts the 
outcomes of health policy 
interventions, so that low-
income households bear 
most of the burdens of 
disease and death. 
Inequities in access to 
resources (e.g., utilities and 
healthcare) and health 
intervention policies (e.g., 
social distancing) hinder 
low-income households’ 
ability to protect themselves 
from infection. The findings 
provide implications for 
management of future 
disasters beyond the 
COVID-19 pandemic. In 
particular, there is a critical 
need for policies to address 
energy and healthcare 
affordability and accessibility 
among vulnerable 
communities.  
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adhering to social distancing and quarantine protocols may be fundamentally flawed 
when considering families under severe financial stress.  
 
While many recent public debates and academic studies have focused on how health  
information and beliefs factor into the adoption of COVID-19 mitigation efforts, 
household and economic limitations play a significant role in the ability to adopt 
behaviors that involve spending more time at home, which sounds deceptively cost-
free, but has potential financial and health costs, such as lost wages from voluntary 
adherence to stay-at-home orders by non-essential employees. More importantly, 
even if one remains employed, there are increased costs from used supplies and 
utilities due to increased hours spent at home 16–18.  
 
Current energy burden research is mainly carried out at the individual, small-scale 
level (e.g., building, person, household), but not at the population level (e.g., national 
building stock, cities, building typologies). The limited availability of detailed 
residential energy consumption data during the pandemic makes it challenging to 
understand the potential impacts of energy burdens and income disparities on health 
outcomes at the population level. Deeper insights into the presence and persistence 
of energy burdens and socioeconomic constraints during staying-at-home orders 
across populations are severely limited, thereby undermining effective health policy 
and interventions. Further, many policies have provided temporary protection against 
utility shut-offs or evictions due to non-payment, which has affected households of 
different income levels, so that counties or cities themselves may have differential 
success in outbreak control and subsequent population health outcomes.  
 
This study moves beyond extant COVID-19 studies to demonstrate the 
multidimensional and interconnected factors of energy burdens, socioeconomics, 
healthcare-related resources, essential workers, health interventions (e.g., social 
distancing policies), and the spread of COVID-19 cases. This study also presents the 
epidemiological models to explicitly consider how energy and household economic 
trade-offs might affect community-level success at mitigating COVID-19. This study 
is based on Giddens’ theory of structuration 19,21, which engages the relationship 
between social structure and human agency. The theoretical assumption here is that 
social structural context is something that both constrains and enables; social 
structure depends on the agency of individuals, but agency is also enabled and 
constrained by rules and resources 23.  
 
This study highlights how energy burdens can drastically stratify the risks of COVID-
19 infection, how contact rates within and across households are likely to be affected 
by public health intervention policies (i.e., social distancing and resource protecting 
policies), and how the synergy between those effects increases the burdens faced by 
the entire population. We estimated energy burdens of low-, middle-, and high-
income households (LIHs, MIHs, and HIHs, respectively) in five U.S. counties during 
the first phase of stay-at-home orders from April to July 2020. This study also 
considers the age-based demography of the county to estimate the percent likely to 
be employed and thus affected by shut-downs, as well as the likely proportion of a 
county’s workforce classified as essential workers, who would be exempted from 
social-distancing policies, and assumed over-representation of essential workers in 
LIHs, MIHs, and HIHs.  
 
Energy burdens were considered as a proxy for inelastic costs that directly support 
household health and safety in this study. Income differences in energy burdens lead 
to differences in COVID-19 exposure risks. They can critically influence the duration 
of illness and concomitant risks of death, assuming that limited economic resources 
compromise adequate access to healthcare before and during infection. We further 
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consider households’ skewed ability to perform their jobs while safely practicing social 
distancing. Specifically, we examine four cases of health intervention policies, 
including 1) “Do Nothing,” 2) “Social Distance Only,” 3) “Economic Support,” and 4) 
“Try Everything.”  This study then parameterized the epidemiological model to reflect 
the conditions of the five counties, chosen for their differences among the relevant 
socioeconomic metrics. Specially, we used a 3-tiered SEIR model of COVID-19 in a 
population stratified into three socioeconomic levels: HIHs, in which there was no 
direct trade-of and families can be assumed to absorb the opportunity costs of social 
distancing without compromising any other health-supportive resources; MIHs, in 
which families can absorb the costs of social distancing while maintaining other 
health-supportive resources for up to a year; and LIHs, in which families do not have 
a sufficient economic buffer to be able to maintain health-supportive resources while 
engaging in social distancing. 
 
RESULTS AND DISCUSSION 
Socioeconomic status distribution, energy burdens, and COVID-19 outbreak  
Our model demonstrated that the socioeconomic status (i.e., number of households 
unable to adopt social distancing due to the constraints of utility and household 
expenditure) of a county drastically influenced the expected course of an epidemic 
outbreak in the population. Under assumed uniform etiology and mixing patterns 
across cities (i.e., discounting the differences based on access to healthcare, public 
transportations, and underlying health conditions not correlated directly with income, 
instead of focusing only on demographic and economic differences), we observed 
that the model for each county produced drastically different baseline results in the 
expected outbreak size over the first 120 days after the introduction of a novel 
COVID-like infection (Fig. 1).  
 
Burdens of COVID-19 over time by socioeconomic status  
In understanding the dynamics, our model also showed how, after the introduction of 
novel infection (for simplicity and consistency, we assumed this to be introduced via 
MIHs), we observed critically different patterns in which socioeconomic strata of 
households were likely to shoulder the burdens of disease and death overtime as the 
COVID outbreak progressed (Fig. 2). For example, in Los Angeles, there was an early 
transition in both disease and death burdens from MIHs to LIHs (Fig. 2e,f), while 
Philadelphia experienced a longer delay after introduction, before the burden of 
cases shifted from the initially infected MIHs to LIHs (shifting from day 20 to day 30; 
Fig. 2e,i); the lag in the shift of death burdens was even more substantial (shifting 
from day 37 to day 65; Fig. 2f,j). In other words, LIHs’ inability to make overall health-
supportive choices due to economic limitations mean they were less able to avoid 
the infection themselves. LIHs both caught and transmitted the disease more quickly 
than MIHs or HIHs and acted as a source of ongoing exposure to higher-income 
households. Therefore, they suffered the most significant burdens and functioned as 
the greatest barrier to effective, population-wide outbreak control.  
  
Health interventions, energy burdens, and reduction of COVID-like outbreaks 
Considering the outcomes of health interventions on these populations, we observed 
that a county’s socioeconomic composition also drastically impacted the 
intervention’s effectiveness (Fig. 3). For the interventions meant to reduce overall 
transmission as a blanket policy, affecting socioeconomic sub-populations differently 
(e.g., “Social Distance Only” policy), we see a ~60% to 78% reduction in symptomatic 
cases from the baseline scenario (“Do Nothing”). In the absence of social distancing, 
however, health intervention policies aimed solely at supplementing the economic 
hardships faced by lower-income populations, who would then be less constrained in 
the individual choices available to them for self-protection (e.g., by  accessing 
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appropriate medical care or paying utilities that support household health; the 
“Economic Support” policy), we were still able to achieve between 6% to 14% 
reductions in symptomatic COVID cases over the first 120 days of an outbreak. When 
both resource protective strategies and social distancing policies were imposed 
together (“Try Everything”), the reduction in total cases ranges from 66% to 81%; 
however, the improvement of the combined strategies was synergistic rather than 
additive, ranging between an additional 2% to 5% improvement, depending on the 
socioeconomic composition of the county. 
 
Health interventions, energy burdens, and reduction of COVID-19 fitted to the 2020 
outbreak 
We repeated the same comparison of outbreak intervention scenarios, using the 
models adapted to fit the observed case incidence data from the COVID-19-
outbreaks in each county (i.e., baseline parameters for interaction and social 
distancing were tailored so that the resulting epidemic curve produced similar growth 
and cumulative symptomatic case counts over 120 days after the first identified case 
of COVID-19 to the reported outbreak for those counties post-COVID-19 
introduction; Fig. 4). In this scenario, our model suggests that each county’s social 
interaction rates and underlying healthcare resource accessibility drastically impacted 
the expected outcome of health interventions, both in magnitude within each county 
and relative impact across counties (compare Fig. 3 with Fig. 4). Unsurprisingly, social 
distancing was more effective in more densely populated counties (now observable 
due to the tailored interaction rates); for example, the tailored results of Los Angeles 
showed a reduction in COVID cases of over 90% (Fig. 4), where in the untailored 
COVID case, Los Angeles achieved 60% reduction. Given these tailored scenarios, 
however, economic support policies alone were capable of achieving up to 38% 
reduction in cases. This result means that LIHs acted as drivers of the ongoing 
outbreak for the entire community due to their economic limitations whether 
lockdowns were achievable or not, but there is a greater impact when social 
distancing cannot be imposed. Therefore, resource protection strategies tailored to 
alleviate financial constraints for LIHs can protect the whole population. While 
economic support strategies were seen to be more effective overall, their benefits 
over lockdown policies were reduced, meaning resource protection strategies may 
be an effective strategy in the absence of social-distancing mandates. Still, they may 
not be cost-effective to enact once lockdown policies are in place.  
 
EXPERIMENTAL PROCEDURES 
Resource Availability 
Lead Contact 
Further information and requests for resources should be directed to and will be 
fulfilled by the Lead Contact, Chien-fei Chen (cchen26@utk.edu). 
 
Materials Availability 
This study did not generate new unique reagents. 
 
Data and Code Availability 
This study used five nationally representative data sources, including the COVID-19 
Community Vulnerability Index (CCVI) 20, the U.S. Department of Energy’s Low-
Income Energy Affordability Data (LEAD) tool 22, John Hopkins’ COVID-19 data 24, 
the American Community Survey (ACS) 25, and the Safegraph data consortium 26.  
 
Methodology  
Selection of studied counties 
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This study selected five counties for epidemiological comparison: Los Angeles, CA; 
Philadelphia, PA; Oakland, MI; Allegheny, PA; and Hidalgo, TX, based on patterns 
in vulnerability ranking across selected socioeconomics and health-related variables 
between each county. The selection of counties was based on population density 
and per capita income, as well as percentages of people below the national poverty 
level, people of racial minorities, people without insurance, households with energy 
burdens by county, and households that spend 30% or more of their income on 
primary care physicians. Counties were chosen to be maximally distinct from each 
other in their pattern of vulnerability across these measures (using pairwise 
Euclidean distance per metric). The following section describes each specific 
variable source.  
 
Variables  
COVID-19 Community Vulnerability Index (CCVI): The CCVI was used to select our 
countries and measure socioeconomic and health vulnerabilities at the county-level 
to indicate the communities that may be less resilient to the impacts of the pandemic 
27. The CCVI builds on the U.S. Center for Disease Control and Prevention’s (CDC) 
Social Vulnerability Index (SVI), a validated metric that uses census tract and county-
level data 20. The CCVI’s six themes include (1) socioeconomic status, (2) household 
composition and disability, (3) minority status and language, (4) housing type and 
transportation, (5) epidemiological factors, and (6) healthcare system factors. Each 
county is ranked from least vulnerable to most vulnerable in each of these categories.  
 
COVID-19 cases and deaths: For this study, data on COVID-19 cases and deaths was 
observed from January 21 to July 31, 2020, using data from John Hopkins’ University 
24 and USA FACTS 28. The data sources use three main methods to collect this data: 
first, by drawing aggregate county-level data from the Covid Tracking Project, John 
Hopkins’ utilizes data from 56 U.S. states and territories under CDC guidelines for test 
positivity 29,30. Second, USA FACTS indicates where presumed cases are included as 
positive cases and adjusted per capita to represent the cumulative total. Lastly, USA 
FACTS estimates the gaps in daily cumulative cases and deaths by direct referencing 
or scraping from state and local agencies 31. Both sources were used in validation of 
cases and deaths to ensure accuracy. 
 
Public intervention policy:  Using Safegraph mobility data in 2020 32, this study 
analyzed the state-level stay-at-home and social distancing orders that limited 
movement from areas of residence to places of interest. Safegraph is a data 
consortium that provides accurate location data for human migration patterns and 
has been used in various COVID-19 studies 33–36. The anonymized data in the present 
study were collected utilizing cellphone pings coupled with the average dwell time 
per day for each county. The number of devices and the length of time at home were 
then averaged to create a proxy representing the change in movement for each 
county population compared to non-pandemic conditions. It is important to note that 
public intervention policy was only used in the “COVID-19” fitted scenarios and not 
in the “random disease in the cities using this model shape, but not with COVID 
parameters” case. Further, county mandate information does not include the factors 
such as social gatherings, movement restrictions, and curfews; therefore, this paper 
assumed the counties were following state social distancing guidelines.  
 
Additionally, instead of modeling a city’s specific public intervention policies over 
time, we chose to examine the four following cases of policies: 1) “Do Nothing” – 
there were no social distancing policies and the expected differential economic 
impacts on household health-supportive spending remain in place, such as LIHs 
having less access to healthcare or health-supportive utilities due to economic 
constraints; 2) “Social Distance Only” - those who were not essential workers were 
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allowed to social distance, but nothing was done to alleviate disparities in health-
supportive spending for LIHs; 3) “Economic Support” - there was no social distancing 
attempted, but there were programs ensuring that pandemic-related loss of income 
would not compromise household health; and 4) “Try Everything” - social distancing 
was enacted and supplemented by policies that alleviate additional economic 
burdens on LIHs. In reality, every county had a mixture of these policies, but we 
tailored the mixed rates of each county to approximate the magnitude of the 
outbreak in the “do nothing” case by August 2020. Further, while each county has 
taken different policy actions over time, we discussed these cases separately as “pure 
strategies” to highlight how emergent household necessities (e.g., the ability to 
socially distance or afford electricity) can complicate a county or city’s ability to control 
COVID-19 and other illnesses. 
 
Essential workers: An essential worker provides public health and safety, essential 
products, or other infrastructure support during the COVID-19 pandemic; however, 
they are more likely to be exempted or prohibited from adopting social distancing 
policies. Workforce statistics for essential workers were retrieved by analyzing the 
number of workers per industry and calculating each industries’ labor force 
percentage from the U.S. Bureau of Labor Statistics (BLS) 37 and is based on 
methodology proposed in a recent study by the United Way 38. The state-level 
statistics were used as a proxy for each of the counties because county-level data 
were not available.  
 
Socioeconomic status: We used a combination of demographic factors and economic 
levels to estimate population levels of contact throughout different socio-
demographic strata. The total population and percent of people over 65 years old 
and less than 17 years old were retrieved from the CDC COVID-19 index 25. The 
estimates of household income level were based on nationally adjusted household 
sizes and cost of living relative to the area, as well as the percentage of households 
by county-level that represented low-, medium-, and high-income were estimated 
using data from the Pew Research Center 39. We defined LIHs as two-thirds of the 
national median, medium-income as two-thirds to double the median, and high-
income as more than double the median.  
 
Energy consumption burden (ECB): We established the 2020 county-level energy 
consumption burden (ECB) database for LIHs. Due to the lack of official energy 
consumption data at zip code or county-level in 2020, the historical energy 
expenditure (electricity, fuel, and natural gas) and burden estimation among LIHs 
were collected from the Low-Income Energy Affordability Data (LEAD) Tool by the 
National Renewable Energy Laboratory (NREL) and the U.S. Department of Energy 
(DOE) 22 and U.S. Energy Information Administration (EIA) 40. Technically, the 2020 
county-level LIHs’ ECB data was estimated from county-level information on LIHs’ 
annual income in 2014-2018 and 2020 state-level energy consumption data by using 
the following equation: 

ECB!"!"	$% =
∑ Exp!"!"	$%&'
(

Income!"()*!"(+	$%
 

= ./ Exp!"()*!"(+	$&
&

(
×
Exp!"()*!"(+	$%&
Exp!"()*!"(+	,&1111111111111111111 ×

Con!"!"	$%&
Con!"()*!"(+	$%&

2 ×
ECB!"()*!"(+	$

∑ Exp!"()*!"(+	$&&
(

 

where  ECB!"!"	$% was 2020 ECB for the 𝑖th county in the 𝑗th month for LIHs, Exp!"!"	$%& 
was the sum of energy expenditure for the 𝑘th source (electricity, fuel, and natural 
gas) of the 𝑖th county in the 𝑗th month in 2020, and Income!"()*!"(+	-. was the average 
income of 𝑖 th county in the 𝑗th month during 2014-2018 for LIHs. Exp!"!"	$%&  was 
further calculated by using energy expenditure for the 𝑘th source of the 𝑖th county 
during 2014-2018 (Exp!"()*!"(+	$&), energy expenditure fluctuation ratio in 𝑗th month 
for kth source compared with the monthly average (Exp!"()*!"(+	$%& Exp!"()*!"(+	,&1111111111111111111⁄ ), 
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and 2020 state-level residential energy consumption ratio for kth source of ith county 
in jth month compared with 2014-2018 data (Con!"!"	$%& Con!"()*!"(+	$%&⁄ ). The applied 
monthly energy consumption indices for electricity, fuel, and natural gas in each state 
were sales of electricity to residential sector, prime supplier sales volume (propane), 
and nature gas consumption by residential sector. Income!"()*!"(+	$% was calculated 
by using the ECB for ith county for LIHs (ECB!"()*!"(+	$ ) and the sum of energy 
expenditure for the kth source of the ith county during 2014-2018 (∑ Exp!"()*!"(+	$&&

( ). 
The missing values of LIHs’ ECB data were replaced with the estimations from the 
multiple imputation technique 41,42, which includes county-level CCVI data as variables 
due to its completeness for all counties and socioeconomic relationship with ECB. 
 
Methodological justification 
This study did not consider racial and demographic differences in economic 
stratification (i.e., HIHs, MIHs and LIHs) to highlight how financial resources 
themselves have the potential to drastically stratify the risks to households, even 
before further etiological differentiation (thereby also avoiding the potential circular 
logic that racial differences in health outcomes may be due to poorer socioeconomic 
conditions). Based on this breakdown, the authors estimated how much of the 
population’s contact rates within and across households were likely to be affected by 
social distancing policies, including stay-at-home orders. We did consider the age-
based demography of the city as part of estimating the percent likely to be employed 
(and thus affected by shut-downs), but did not include age-based probabilities of 
infection or death, to highlight again how household economics alone can impact 
economic-epidemiological dynamics. We further included the likely proportion of a 
city’s workforce classified as essential workers, who would be exempted or prohibited 
from adopting social distancing policies. We also assumed over-representation of 
essential workforce in LIHs and MIHs and used COVID-19-inspired rates for etiology 
of infection (assuming population-level mass averages without differentiating by age, 
race, or gender). 
 
Based on household income level, we explicitly considered what proportion of 
household income would be expended on utilities as a proxy for inelastic costs that 
directly support household health and safety. These differences naturally lead to 
differences between households in exposure risks, but also critically influence the 
likely duration of illness (and concomitant risks of death) experienced by individuals 
who catch COVID-19, assuming that limited economic resources compromise 
adequate access to critical healthcare before and during active infection. We further 
consider the skewed ability of these households to perform their jobs while safely 
practicing social distancing (e.g., working from home, limiting contact with the public, 
etc.). To be most conservative, we assumed no direct job loss due to either public 
health policies (such as lockdowns) or from illness-related absenteeism; economic 
losses due to illness are felt only as temporary losses in income during protective 
protocols or illness. This means that all the differences in our study come only from 
the trade-off in exposure and healthcare – relaxing this assumption would 
meaningfully increase the burden borne by lower income families in negative 
economic and health outcomes. 
 
Data analysis 

1. Epidemiological Model 
We employed a Susceptible-Exposed-Asymptomatic-Infectious-Recovered-Dead 
(SEAIRD) model 43,44 with socioeconomically dependent proportions of the population 
able to effectively shelter at home and/or afford other health-supportive resources. 
The former impacts the rates of COVID-19 exposure, where interactions with others 
decreases as income status increases, and the latter decreases the duration of 
infection while increasing the probability of recovery relative to death. We first 
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defined the population of Susceptible individuals in each socioeconomic status class, 
𝑆/0102/. Similarly, we defined Exposed individuals in each status class, 𝐸/0102/, as those 
who have been infected but were neither symptomatic nor capable of transmitting 
infection to others. To reflect the possibility that individuals may have never become 
infectious, we allowed individuals to progress directly from the Exposed class into the 
Recovered class, 𝑅/0102/ . Alternatively, individuals may have progressed from 
Exposed to the first phase of Infectiousness, 𝐴/0102/, where individuals could transmit 
the infection but were not yet symptomatic. Individuals, then, could either recover or 
progress to the second phase of infectiousness, 𝐼/0102/ , in which they were both 
infectious and symptomatic. For simplicity, we assumed that both asymptomatic and 
symptomatic infectious individuals were equally likely to infect a susceptible 
individual. Individuals in 𝐼/0102/  could either recover or progress to disease-related 
death, 𝐷/0102/.  
To capture the dynamics of this system, we also defined the composite value, 𝛽-,., 
which captured the probability of successful infection transmission due to contact 
between Infectious individuals of status i and Susceptible individuals of status j. We 
separately defined 𝜌-,. , which captured the probability of contact between an 
individual in status i and an individual of status j in the absence of social change in 
response to COVID-19. We defined 𝜌4,51111  to denote the probability of contact when 
both individuals i and j were practicing social change in response to COVID-19. Note 
that status was assumed to affect the possibility of social distancing, such that LIHs 
were less able to effectively social distance. Further, we assumed that as 
socioeconomic status increases, the percent impact of social change in response to 
COVID-19 also increases (i.e., the 		𝜌4,51111	decrease) , reflecting the proportion of 
“essential workers” required to report to work despite the desire to socially distance. 
 
This study also defined the rate of becoming infectious, 𝜇 , and the rates of 
progression from 𝐴/0102/  to 𝐼/0102/  as 	𝛿(  and from 𝐼/0102/  to 𝐷/0102/  as 	𝛿! , each of 
which is assumed to be status-independent. We defined the rates of recovery from 
𝐸/0102/ , 𝐴/0102/ , and 𝐼/0102/  classes as 𝛾",/0102/  through 𝛾!,/0102/ , respectively, which 
were dependent on status as a proxy for both underlying health and access to 
healthcare, as this access critically depends on economic resources, which may be 
depleted by expenditure on household access to utilities.  
 
Lastly, we defined 𝜂/0102/  to capture the decreased rate of recovery from both  𝐴/0102/ 
and 𝐼/0102/, respectively, due to compromised access to health-related resources (up 
to and including the luxury of convalescence when ill) in the absence of social change 
in response to COVID-19. To further incorporate the resource cost burden incurred 
by social change in response to COVID-19, we defined 𝜂/0102/111111111 to reflect alleviation of 
limitations in resources, such that 𝜂/0102/111111111 > 𝜂/0102/ , reflecting the intervention of a 
policy to ensure ongoing access to critical health-supportive resources, such as 
energy. As socioeconomic status increases, the impact of social change in response 
to COVID-19 costs decreases (i.e., 𝜂/0102/ increases) to reflect the increased economic 
capacity to handle incurred costs (whether due to lost salary from furloughs, hiring 
help to perform disease-exposure risky tasks, or other burdens associated with 
distancing). For clarity, we defined 𝑁/0102/ = 𝑆/0102/ + 𝐸/0102/ + 𝐴/0102/ + 𝐼/0102/ +
𝑅/0102/ + 𝐷/0102/. Finally, we defined the socioeconomic distribution of the population 

as 𝑁⏞ = ∑ 𝑁/0102/6
/0102/7( . Again, to highlight the processes we wish to consider most 

clearly, we assumed no births, deaths from any cause other than the disease, or 
movement into or out of the population.  
 
Based on these definitions, we have defined the baseline dynamics of the model, in 
the absence of social change in response to COVID-19, in the following way: 
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𝑑𝑆/0102/
𝑑𝑡

= −/𝜌.,/0102/𝛽.,/0102/𝑆/0102/T𝐴. + 𝐼.U
∀.

 

𝑑𝐸/0102/
𝑑𝑡

=/𝜌.,/0102/𝛽.,/0102/𝑆/0102/T𝐴. + 𝐼.U
∀.

− T𝛾",/0102/ + 𝜇U𝐸/0102/ 

𝑑𝐴/0102/
𝑑𝑡

= 𝜇𝐸/0102/ − T𝛾(,/0102/𝜂/0102/ + 𝛿(U𝐴/0102/ 
𝑑𝐼/0102/
𝑑𝑡

= 𝛿(𝐴/0102/ − T𝛾!,/0102/𝜂/0102/ + 𝛿!U𝐼/0102/ 
𝑑𝑅/0102/
𝑑𝑡

= 𝛾",/0102/𝐸/0102/ + 𝛾(,/0102/𝜂/0102/𝐴/0102/ + 𝛾!,/0102/𝜂/0102/𝐼/0102/	 
𝑑𝐷/0102/
𝑑𝑡

= 𝛿!𝐼!,/0102/ 

 
We then modify this baseline model by the use of the appropriate combinations of 
𝜌-,. , 𝜌4,51111, 𝜂/0102/,	 and 𝜂/0102/111111111  to consider our four scenarios: the baseline scenario of 
“Do Nothing”, where we used 𝜌-,. and 𝜂/0102/ unaltered; the “Social Distance Only” 
scenario, where we used 𝜌4,51111 and 𝜂/0102/; the “Economic Support” scenario, where we 
used 𝜌-,.  and 𝜂/0102/111111111 ; and the “Try Everything” scenario, in which we use 𝜌4,51111	and 
𝜂/0102/111111111.  
 

2. SI Model:  
Values for the interaction rate, 	𝜌-,.: 

𝜌-,. Low-income Medium-
income 

High-income 

Low-income 1 0.3 0.3 
Medium-
income 0.5 0.5 0.3 
High-income 0.5 0.5 0.3 

 
These values indicate assumed percentage-based corrections for cross-
socioeconomic interaction rates under unaltered societal function (estimated curve fit 
to previous, non-COVID outbreaks). To calculate  𝜌4,51111, we used assumed estimates of 
the percentage of the households in each socioeconomic category that had at least 
one worker employed in a job that would have been classified as essential, 𝑘., such 
that 𝑘. = {0.7,0.3,0.1} . We then calculated 𝜌4,51111 = 𝜌-,.𝑘-𝑘. . To tailor each of these 
calculations to each specific county, we used the weighted average of 	𝜌-,. and 𝜌4,51111	, 
reflecting the overall percentage of that counties’ essential labor force reported, 
scaled by the percentage of the population reported to be between the ages of 18 
and 65 (reflecting the assumed demographic description of most of the workforce 
itself).  
 
Values for the transmission rate, 	𝛽-,.: 
𝛽-,. (from/to) Low-income Medium-

income 
High-income 

Low-income 0.6 0.4 0.4 
Medium-
income 0.6 0.3 0.3 
High-income 0.6 0.3 0.3 

 
These values were initially based on estimates of transmission from Weitz et. al 45, and 
were assumed to increase the probability of transmissible infection as household 
income decreased, reflecting increased probability of interaction due to decreased 
access to indoor leisure spaces both within and outside of the home, and the 
decreased probability of having avoidable public interaction because of employment. 
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Values for etiological progression: 
Further etiological parameters were tailored based on data for each county, including 
the local case fatality rate (reflecting local differences in healthcare capacity and 
baseline health of the population), and mixing rates governing all the 	𝛽-,.  terms, 
reflecting differences in average contact rates between individuals in different 
counties (due to patterns in travel, urban planning, etc.). 
 

Parameter Value Source 
𝜇 0.25 

Weitz et al. 45 
𝛿( 0.25 
𝛿! 0.002 The overall estimated case fatality rate for the U.S. as of 

10/27/20 times 1/14 (where 14 days was assumed the 
average duration of fatal illness after the onset of 
symptoms) 

 
Values for the reduction in average recovery rate, 𝜂-: 

𝜂-  
Low-income 0.6 
Medium-income 0.9 
High-income 1 

 
From which 𝜂4̂ was calculated as 𝜂4̂ = (𝟏 − 𝒌𝒊)	𝜂- + 𝒌𝒊	𝜂-(1 − 𝑐), and where c indicated 
a decreased rate of recovery due to compromised ability to rest and undertake 
healthcare-related activities while continuing to work (assumed to be 0.2). 
 
Values for duration of infection based on underlying health condition, 𝛾: 

𝛾!,-  
Low-income 0.06 
Medium-income 0.07 
High-income 0.09 

 
These values were estimated using medium-income households as the presumed 
average, representing a fourteen-day duration of infectivity until immune protection. 
While COVID-19 is now known to be transmissible mostly within a ten-day window, 
we could assume this for all future potential pandemics, and chose fourteen days 
since that was the initial window considered for public health response policy 
estimates. Alterations for duration of infection based on household income were 
estimated as scaling from medium-income households based on known all-cause 

health corrections. Values for 	𝛾(,- were then calculated as 	𝛾(,- = 	
)
()
𝛾!,-, reflecting an 

assumed proportionate risk of death relative to recovery, and 	𝛾",- = 	
(
(""

𝛾(,-  as an 
assumption for what percentage of truly asymptomatic cases may have progressed 
undetected to full immune protection. 
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Figure 1. County cases and deaths for novel COVID-19 infection 

 
Differences in un-fitted model outcomes across counties due solely to differences in 
demographic and socioeconomic make-up 
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Figure 2. Outbreak curves over time in the un-fitted, “do nothing” scenario 

 
The left column shows symptomatic infectious cases overtime in each socioeconomic 
category of households in each county. The right column shows cumulative deaths 
over time in each socioeconomic category of households in each county. 
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Figure 3. Effect of interventions on symptomatic cases in the different counties 
for un-fitted outbreak 

 
Delta labels indicate the percentage improvement from the combined strategy above 
that achieved by social distancing alone. 
 
Figure 4. Effect of interventions on symptomatic cases in the different counties 
for a COVID-19 fitted outbreak 

 
Delta labels indicate the percentage improvement from the combined strategy above 
that achieved by social distancing alone. 
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