The black carbon dispersion in the Southern Hemisphere and its transport and fate to Antarctica, an Anthropocene evidence for climate change policies

Ernesto Pino-Cortés a,⁎, Luis A. Díaz-Robles b, Francisco Cubillos b, Francisco Cereceda-Balic c, Roberto Santander b, Joshua S. Fu d,e, Samuel Carrasco a, Jonathan Acosta f

a Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Ave Brasil 2162, Valparaíso, Chile
b Departamento de Ingeniería Química, Universidad de Santiago de Chile, Ave Libertador Bernardo O'Higgins 3363, Santiago de Chile, Chile
c Centre for Environmental Technologies and Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
d Department of Civil and Environmental Engineering, University of Tennessee, 851 Neyland Drive, Knoxville, TN, USA
e Computational Earth Sciences Group, Computational Science and Engineering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, USA
f Departamento de Estadística, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago de Chile, Chile

HIGHLIGHTS

• Simulation of the long range transportation of atmospheric black carbon.
• The biomass burning is the main responsible of the atmospheric black carbon in Antarctica.
• West Antarctica is impacted in 17–24 days since black carbon is emitted.

GRAPHICAL ABSTRACT

ABSTRACT

Black carbon (BC) has been measured in Antarctica’s air, and its global warming effect can potentially speed up the ice melting in the most solid water reservoir of the planet. However, the primary responsible sources are not well evidenced in this region. The dispersion of black carbon emissions from the Southern Hemisphere was conducting using atmospheric chemical transport model and we compared the results with satellite registries from March 1st to April 30th in 2014. The emission inventory considered the anthropogenic and biomass burning emissions from global datasets. The largest and most populated cities in Southern Hemisphere showed the higher emission of BC. As a result, the average daily concentrations of atmospheric BC were around 4 ng/m3 in most regions of Antarctica according to its pristine characteristics. We analyzed fifteen relevant sites in coastal zones of Antarctica and some peaks registered by the satellite records were not replicated by model outputs and it was mainly associated with the lack of emissions. Finally, we made simulations in the same period without biomass burning emissions and we observed decreased concentrations of BC in the range of 20–50%. As a result, we show that the black carbon transportation from the continental land to the polar region took place in 17–24 days during the Austral summer and the biomass burning emissions were the primary source. Black Carbon deposition in Antarctica is not permanent, but the uncontrolled emissions from Southern Hemisphere can increase its transportation to the white continent and make its accumulation during the period when the weak polar vortex occurs.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Air pollution is one of the biggest problems that humankind faces today. Higher emissions of pollutants from several chemical reactions on natural and anthropogenic sources have generated several environmental problems at local and regional scales. Black carbon (BC) is one of the substances with many studies related to this topic. It is well known generated from incomplete combustion of biomass and fossil fuels (Petzold et al., 2013).

BC is considered as a light absorbing carbonaceous component in particulate matter (Lack et al., 2014; Sasser et al., 2012). This characteristic classifies this pollutant as a contributor to climate change, changing the temperature profile at low atmosphere levels, frequency of the precipitations, surface albedo, and snow rate fusion. Several studies reported variations of climatic parameters using a combination of real monitoring and resulted from the simulation of numerical models (Bauer et al., 2013; Bond et al., 2007; Novakov et al., 2003; Wang et al., 2014). It is one of the short-lived climate pollutants.

The decrease in the particle size of BC increases the ability to stay in the air, which favors its transport over long distances (Waggoner et al., 2015). Due to limiting measurement sites across Antarctica, chemistry transport models can fill the cap. Research studies at local (Lyamani et al., 2011; Srivastava et al., 2012), regional (Gertler et al., 2016), continental (Briggs and Long, 2016), and global scale (Ramanathan and Carmichael, 2008) have simulated atmospheric BC dispersion. This information could be obtained using air quality simulation models. These are computational tools that act as surrogate atmospheres in those locations where experimentation is not possible. They are designed by the combination of mathematical equations and results of experiments that correspond to appropriate solutions for them. These computational tools have different levels of complexity to obtain results.

The development of air quality simulation during the last decade allowed the presence of BC in remote zones of the planet like the Arctic (Cheng, 2014; Gogoi et al., 2016; Huang et al., 2015a; Zhou et al., 2012), Himalaya’s mountains (Bhat et al., 2017; Gertler et al., 2016; Negi et al., 2019; Yasunari et al., 2013) glaciers of North America (Hanna et al., 2018), and rural areas of Asia (Cheng, 2014; Ming et al., 2013; Wang et al., 2016; Winther et al., 2014). The first study using an air quality model (Penner et al., 1993) withich domain simulated the air of Antarctica considered the biomass burning emissions from Brazil, Australia, Indonesia, and Africa as the primary external source. That research estimated an anthropogenic BC emission inventory using BC to sulfur dioxide (SO2) ratio and SO2 global emissions and included biomas emissions from previous reports. Using a Lagrangian parcel model called GRANDTOUR, they simulated the long transportation of BC on January and July with a 4.5 × 7.5° grid resolution and compared the results with measured observations worldwide, including only one site with available records in the South Pole. In this specific location, the predicted value of atmospheric BC was 0.2 ng/m³ and 0.14 ng/m³ on January and July, respectively, and both records were lower than measured concentrations. The difference was associated with the underprediction of the biomass burning emissions. Meanwhile, air monitoring campaign results (Hansen et al., 2001) registered a strong local effect in McMurdo station, another zone of Antarctica, during November 1995 and February 1996. A similar pattern was observed for the same period in the results of the air monitoring campaign reported by Pereira et al. (2006), but this study confirmed the simulated results of Penner et al. in the comparison at the South Shetland Islands, Antarctic Peninsula. They showed a direct correlation of the biomass burning activity in Southern Hemisphere and atmospheric BC anomalies measurements applying principal component analysis with BC, Radon element and meteorological data. It is remarkable to distinguish that studies reported many wildfires every year (Buerger and Smith, 2013; dos Santos et al., 2019; Fischer et al., 2012; Huang et al., 2015b; Jaffe and Wigder, 2012; Úbeda and Sarricolea, 2016) in those regions that geographically surround the Antarctic Continent.

The study reported by Asmi et al. (2018) measured equivalent BC mass fractions by optical means showing an average of 17.3 ng/m² at the Marambio station, considered as higher than other published studies, and those authors treated local influences from the Antarctic Peninsula in the results. However, an analysis of two ice core records by Arienzo et al. (2017) showed a similar conclusion mentioned in the last paragraph. Also, through a combination of snow and satellite analysis, most recent results (Khan et al., 2019) concluded that local and external emissions impacted the deposition of atmospheric BC in Antarctica. A similar conclusion was reported by Hara et al. (2019) at the Syowa station using atmospheric BC samples and back-trajectory simulations in the period of February 2005 – December 2016, and the study published by Marquetto et al. (2020) analyzing the 2014–2015 Austral summer on the Pine Island Glacier with the same approach. Nonetheless, an updated global atmospheric BC apportionment of all sources in the complete region of Antarctica has not been reported. Thus, we were able to expose a hemispheric simulation of Southern Hemisphere emissions and evaluate the effect of those sources in the atmospheric BC concentration to Antarctica.

2. Methodology

2.1. Modeling system and simulation inputs

The model Weather Research Forecast (WRF) version 3.7.1 was used for meteorological simulation (Skamarock et al., 2008). The polar stereographic projection was chosen, centered on Antarctica at coordinates −90° South and −65.523° West, same as reported by Pino-Cortés et al. (2020a). The domain of the study was set in 180 × 180 grid cells and a resolution of 108 km, the same as published by other studies with an emphasis on simulation of air quality in the hemispheric analysis (Huang et al., 2015a; Sarwar et al., 2019). The geographical resolution was set in 10 min, with 50 vertical layers. The input files of the meteorological variables were downloaded from the Nation Center for Atmospheric Research Data Archive (NCAR RDA) website (rda.ucar.edu/) type GRIB2, option dso.833 (NCEP, 2015) from January 1st to May 1st of 2014. The parameterization used for the meteorological simulation is shown in Table 1.

The emission inventory required for air quality simulation was processed using Sparse Matrix Operator Kernel Emissions (SMOKE) model, version 4.5 (Baek and Seppanen, 2018). The specific details of the module’s processing and steps made in SMOKE are explained in the previous report (Pino-Cortés et al., 2020a). The anthropogenic emissions in Southern Hemisphere is challenging to obtain due to the lack of national information disaggregated geographically. The Emissions Database for Global Atmospheric Research (EDGAR), version HTAP2.2 (Janssens-Maenhout et al., 2015) was used as an input in SMOKE. EDGAR is a compiled source emission with results from ships (sea transportation), Energy (electric generation), Industry, Transport and Residential sectors. The biomass burning emission from wildfires is one of the main sources of atmospheric pollutants and it is considered the primary source of atmospheric BC and PM_2.5 worldwide (Bond et al., 2013). The development of an emissions inventory for this activity has been published in the last years. In this study, we used the Global Fire

<table>
<thead>
<tr>
<th>Parameterization</th>
<th>Variable</th>
<th>Option</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphysics</td>
<td>mp_physics</td>
<td>6</td>
<td>(Hong and Lim, 2006)</td>
</tr>
<tr>
<td>Radiation longwave</td>
<td>ra_lw_physics</td>
<td>3</td>
<td>(Collins et al., 2004)</td>
</tr>
<tr>
<td>Radiation shortwave</td>
<td>ra_sw_physics</td>
<td>3</td>
<td>(Collins et al., 2004)</td>
</tr>
<tr>
<td>Surface Layer</td>
<td>sf_clay_physics</td>
<td>1</td>
<td>(Jiménez et al., 2012)</td>
</tr>
<tr>
<td>Planetary Boundary</td>
<td>bl_physics</td>
<td>5</td>
<td>(NARANSHI and NIBNO, 2009)</td>
</tr>
<tr>
<td>Cumulus</td>
<td>cu_physics</td>
<td>4</td>
<td>(Pan and Wu, 1995)</td>
</tr>
</tbody>
</table>
Assimilation System (GFAS) version 1.3 (Kaiser et al., 2012). The steps and implementation of this database for SMOKE use have been reported previously (Pino-Cortés et al., 2020b).

The Community Multiscale Air Quality model (CMAQ) version 5.2 (EPA, 2017) was used for atmospheric BC dispersion in the Southern Hemisphere. The initial and boundary conditions were set to zero to avoid the effects of any particular value. Also, a spin-up period of 2 months (January–February 2014) was considered, being the target days between March and April in 2014, due to the long transportation of this pollutant in the air. Different scenarios were considered in CMAQ for source identification, including all sources and those without one source emissions.

2.2. Simulation outputs analysis

The meteorological simulation outputs and atmospheric BC dispersion from CMAQ were compared with satellite-based data. The results from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) database (Global Modelling and Assimilation Office, 2018) were considered as real observation for temperature, wind speed and atmospheric black carbon at surface level, due to the size of the grid cell (0.5° in horizontal and 0.625° in vertical) and the time step (1 h). That database is a NASA atmospheric reanalysis for the satellite era using the Goddard Earth Observing System Model, Version 5 (GEOS-5) with its Atmospheric Data Assimilation System. MERRA-2 registries have lower horizontal resolution than our results, but it records the most acceptable values for a hemispheric analysis. Many studies have compared and correlated the results from that database and the local measurement of meteorological variables and aerosols (Carmona et al., 2020; Hareef baba shaeb et al., 2020; Ma et al., 2019; Ren et al., 2020; Sitnov et al., 2020). The average Mean Bias (MB), Normalized Mean Bias (NMB) and Index of Agreement (IOA) were used as the main statistical operators for model outputs validation of the average daily results and their definitions have been published (Emery et al., 2001).

3. Results and discussion

The atmospheric BC emissions were analyzed between January and May of 2014, being the biomass burning the primary source in the Southern Hemisphere during that period. We studied the monthly profile emissions for the most relevant or populated cities in this domain (Fig. 1). The higher monthly registries were observed in January for bio-sols (Carmona et al., 2020; Hareef baba shaeb et al., 2020; Ma et al., 2019; Ren et al., 2020; Sitnov et al., 2020). The average Mean Bias (MB), Normalized Mean Bias (NMB) and Index of Agreement (IOA) were used as the main statistical operators for model outputs validation of the average daily results and their definitions have been published (Emery et al., 2001).

Fig. 1. BC emissions during January and April of 2014 at the most important cities in Southern Hemisphere from a) anthropogenic b) biomass burning.
Fig. 2. Comparison of atmospheric black carbon concentrations from CMAQ and MERRA-2. a) Registries in Antarctica on April 15th, 2014. b) Daily concentrations in fifteen zones in Antarctica.
The average daily atmospheric black carbon concentrations decreased in the range of 20–50% when the scenario without biomass burning was considered (for other zones details, see Fig. S3). The results indicate that the CMAQ model simulated the transport of BC from lower latitudes and showed the direct effect of this source on the atmospheric black carbon concentrations in the Antarctic continent. It probes conclusions mentioned in monitoring campaigns at specific locations like Pine Island Glacier (Marquetto et al., 2020), King George Island (Pereira et al., 2006), Zhongshan (Ma et al., 2020) Palmer (Khan et al., 2019), and O’Higgins (Cereceda-Balic et al., 2020) base stations. The most relevant finding of this study is the simulation of the hemispheric transportation of atmospheric black carbon particles from Southern continents to Antarctica and both anthropogenic and biomass burning emissions sources effect. Even when the natural circumpolar wind prevents the ingress of airmasses from lower latitudes particles in Austral winter, this effect is reduced in late spring and weaker during summer in Southern Hemisphere (Waugh et al., 2017). It is highly probably the long transportation of particles during that period and higher surface concentrations of BC in Antarctica during late summer.

The daily average BC concentrations without biomass burning emissions throw simulation were analyzed in Fig. 4. The real effect of this source showed evidence after 17 days when the registries started to decrease compared to the simulation with all emissions sources. The locations with the highest difference were those located nearest to Australia and New Zealand, like McMurdo, Mario Zucchelli and Roosevelt. These zones in Antarctica must be affected by the westerly wind transport of atmospheric BC from the several yearly wildfires emissions that occurred in both countries.

On the other side, a middle difference was observed in Thurston, Rothschild and Smiley locations, which is expected. Those stations are on the West side of Antarctica and far from the continents. In this region, the atmospheric BC particles showed significant difference past 24 days since the biomass burning emissions were shutdown, which also evidences the effect of this source. A similar trend was observed in isolated stations like Casey, Davis and Syowa. Finally, the rest of the studied locations showed a lower difference in atmospheric BC concentrations. Otherwise, the original peak registry in Eduardo Frei Montalva, Macchu Picchu and Joinville on April 22nd was not replicated in the second scenario. This anomaly was not observed in other nearby locations like

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean BC (ng/m³)</th>
<th>IDA</th>
<th>NMB</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casey</td>
<td>1.968</td>
<td>2.642</td>
<td>0.4258</td>
<td>-0.2549</td>
</tr>
<tr>
<td>Davis</td>
<td>2.058</td>
<td>2.876</td>
<td>0.4322</td>
<td>-0.2846</td>
</tr>
<tr>
<td>Eduardo Frei Montalva</td>
<td>1.224</td>
<td>2.103</td>
<td>0.4160</td>
<td>-0.4177</td>
</tr>
<tr>
<td>Joinville</td>
<td>1.127</td>
<td>2.022</td>
<td>0.4765</td>
<td>-0.4427</td>
</tr>
<tr>
<td>Low</td>
<td>1.106</td>
<td>2.043</td>
<td>0.4295</td>
<td>-0.4584</td>
</tr>
<tr>
<td>Machu Picchu</td>
<td>1.260</td>
<td>2.106</td>
<td>0.4198</td>
<td>-0.4020</td>
</tr>
<tr>
<td>Macambio</td>
<td>1.111</td>
<td>1.920</td>
<td>0.4184</td>
<td>-0.4215</td>
</tr>
<tr>
<td>Mario Zucchelli</td>
<td>2.402</td>
<td>2.343</td>
<td>0.5035</td>
<td>0.0251</td>
</tr>
<tr>
<td>McMurdo</td>
<td>1.902</td>
<td>2.186</td>
<td>0.5049</td>
<td>-0.1298</td>
</tr>
<tr>
<td>Roosevelt</td>
<td>1.876</td>
<td>1.863</td>
<td>0.3998</td>
<td>0.0074</td>
</tr>
<tr>
<td>Rothschild</td>
<td>1.959</td>
<td>2.307</td>
<td>0.4279</td>
<td>-0.1510</td>
</tr>
<tr>
<td>Smiley</td>
<td>2.016</td>
<td>2.274</td>
<td>0.3672</td>
<td>-0.1136</td>
</tr>
<tr>
<td>Syowa</td>
<td>1.398</td>
<td>2.637</td>
<td>0.3482</td>
<td>-0.4776</td>
</tr>
<tr>
<td>Thurston</td>
<td>2.065</td>
<td>1.943</td>
<td>0.1822</td>
<td>0.0626</td>
</tr>
<tr>
<td>Yelcho</td>
<td>1.959</td>
<td>1.562</td>
<td>0.1581</td>
<td>0.2541</td>
</tr>
</tbody>
</table>

Fig. 3. Average simulated BC concentrations from March 1st to April 30th of 2014. a) All sources emissions considered. b) Without biomass burning emissions considered.
Fig. 4. Comparison of daily black carbon concentrations with and without biomass burning emissions.
Marambio, Yelcho and Low stations. The statistical analysis of biomass burning emissions effect in Antarctica was stated in Supplementary files. We considered that the orography in these zones of Antarctica could affect the wind direction, deviating the atmospheric BC particles from Southern America to specific locations in some period.

4. Conclusions

We simulated the dispersion of atmospheric black carbon emissions from the Southern Hemisphere and compared the results with satellite registries during the late summer of 2014, when the tropospheric polar vortex is weak This research showed the effect of biomass burning emissions in Antarctica, with 17–20 days of transportation from land to the continent. Otherwise, the main results suggest that the hemispheric analysis of atmospheric black carbon dispersion must keep studying for future scenarios. Also, particle speciation in a mesoscale analysis must include the local anthropogenic sources of the research stations for better known on specific locations of the continent. Long-range transport brings other aerosol species of anthropogenic/combustion origin, such as sulfates and nitrates which may affect snow composition, melting point, and albedo. Even when the average air concentration of atmospheric BC in Antarctica is relatively low (under 4 ng/m³), an intensification of the natural and anthropogenic emissions of atmospheric BC could increase the future climate trends in West Antarctica. That is why more public policies must address efficient climate change strategies to prevent and reduce wildfires in the Southern Hemisphere. The uncontrolled emissions of black carbon can increase the probability of its transportation to the white and pristine continent and produce its accumulation. This scenario could consequently impact on the acceleration in the melting of snow and ice, the change in the albedo of this area of the cryosphere and significantly affect the Earth’s radiative balance, aggravating the global climate change.

Funding

This work was supported by ANID BECAS/DOCTORADO NACIONAL 21150125, ANID FONDECYT 112079 and the supercomputing infrastructure at NLHPC (ECM-02). This work was funded also by the Chilean Ministry of Science, Technology, Knowledge and Innovation under projects FONDECE ID18101152 and FONDECE ID1910359 and by Universidad Técnica Federico Santa María under project DGIP PI_M_2020_58.

Credit authorship contribution statement

Ernesto Pino-Cortés, Luis Díaz-Robles, Francisco Cereceda-Balic and Joshua S. Fu conceived the study, conducted the simulations and wrote the initial draft of the paper. Francisco Cubillos and Roberto Santander reviewed and refined the initial draft of the paper. Samuel Carrasco and Jonathan Acosta analyzed the statistical performance. All authors contributed to interpreting the results and refinement of the paper.

Data availability

The other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The WRF version 3.7.1 codes can be downloaded at wrf/users/download/get_source.html. The CMAQ version 5.2 codes can be downloaded at www.cmascenter.org. Maps used in the spatial plots were created using Panoply and it is available at www.giss.nasa.gov/tools/panoply. The map used in the graphical abstract was built in Vapor and this software can be downloaded at www.vapor.ucar.edu.

Declaration of competing interest

The authors declare no competing interests.

Acknowledgments

We acknowledge ECCAD for the archiving and distribution of the data EDGAR and GFASv1.3.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2021.146242.

References

