
1. Introduction
Tropospheric ozone is a typical secondary pollutant, which adversely affects public health, crop yields, and 
air quality (Chen et  al.,  2007; Schauberger et  al.,  2019; Suciu et  al.,  2017; Tai & Martin,  2017). Addition-
ally, O3 has a significant impact on global climate change (IPCC,  2021; Morgenstern et  al.,  2014). While a 
small amount of tropospheric O3 is transported from the stratosphere; it is mainly produced via photochemical 
reactions among reactive precursors (NOx, VOCs, and CO). In general, at any location, the measured surface 
O3 is the sum of the regional background O3 and locally produced O3 (Berlin et al., 2013; Nielsen-Gammon, 
Tobin, & McNeel, 2005; Nielsen-Gammon, Tobin, McNeel, et al., 2005). Regional background O3 refers to the 
amount of O3 transported into the area by large-scale winds (Langford et al., 2009; Nielsen-Gammon, Tobin, & 
McNeel, 2005; Nielsen-Gammon, Tobin, McNeel, et al., 2005), that is, the global background and the regional 
transport of O3, which mainly includes the photochemical effects of natural emissions of VOCs, NOx, and CO; 

Abstract Uprising ground-level ozone (O3) and its regional pollution in Northern China are attracting more 
attention. Besides local precursor emissions and photochemistry, background ozone and long-range transport 
also contribute significantly to O3 concentrations. To quantify the regional background O3 concentrations  and 
their temporal and spatial variations, multiple methods, including the principal component analysis (PCA) 
and the Texas Commission on Environmental Quality (TCEQ) method, were applied as a case study in 
Shandong province in Northern China, where serious O3 pollution occurred frequently yet the background 
contributions have not been well quantified. We used four methods to quantify the regional background O3: 
Method 1 is PCA analysis with only ambient O3 data as input; Method 2 is PCA analysis considering O3 and 
meteorological parameters; Method 3 combines multiple linear regression and the traditional PCA method; and 
Method 4 is based on TCEQ and consists of the lowest MAD8 O3 measured to represent regional background 
O3 concentrations. Results derived from multiple methods show an overall consistent trend with 2018–2020 
averaged regional background O3 (MDA8) of 41.5 ppb, accounting for 79.4% of the total O3 in the region. 
From 2018 to 2020, the changes in regional MDA8 O3 estimated by Methods 1–4 are −1.8, 0.7, −2.4, and 0.4 
ppb, respectively. Clear seasonal variations in the regional background O3 are observed, showing a pattern of 
summer > spring > autumn > winter. In addition, the regional ozone contribution at coastal cities was larger 
than that for inland cities with local O3 contribution gradually increasing from coastal areas to inland areas. The 
3-year average sea-land breeze contribution to summertime O3 in the eastern coastal cities was estimated to be 
around 2.1%, while the local photochemistry to O3 in the inland cities was about 29.7% during ozone pollution 
episodes, with maximum contribution estimated up to 55.8%. Overall, our study provides insights into the 
regional background ozone and local photochemistry in Northern China.

Plain Language Summary Surface Ozone is harmful to human health and plants, which is a 
result of both local emissions and regional contributions. In this study, multiple methods were applied to 
estimate the regional background ozone in a typical region, Shandong province in North China for the years 
2018–2020. Temporal and spatial changes in the regional background ozone were estimated. In addition to the 
regional background ozone, contributions from local emissions and local meteorology (such as sea-land breeze 
circulation) to ozone are also analyzed.
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long-range transport of O3 from distant emission sources; and O3 from stratosphere-troposphere gas exchange 
(Langford et al., 2009; Vingarzan, 2004). In most studies, regional background O3 is defined as the O3 that would 
be present in the absence of anthropogenic emissions (Skipper et al., 2021).

O3 pollution has become increasingly prominent with obvious regional pollution characteristics (Dai et al., 2021; 
Dang & Liao, 2019). To prevent and control O3 pollution, it is essential to quantify the background and local 
O3 contributions so that the O3 reduction efficiency by controlling anthropogenic precursors can be investi-
gated (Vingarzan, 2004). Regarding the concentration of regional background O3, existing research has not fully 
addressed this problem. The most commonly used methods for calculating regional background O3 concentra-
tions include the background in-situ measurement, the principal component analysis (PCA) method, the Texas 
Commission on Environmental Quality (TCEQ) regional background O3 estimation method (Wu et al., 2017), 
and modeling simulations (Skipper et al., 2021). The PCA method has been used in estimating background O3 in 
the past decade. Langford et al. (2009) were the first to use PCA to analyze the regional background O3 concen-
tration for Texas in 2006 and identified the first principal component (explained variance of 84%) as the regional 
background O3 concentration, which was demonstrated by the spatial distribution of load and meteorological 
conditions. Using the same method, Liang et al. (2018) analyzed the regional background of O3 in the Yangtze 
River Delta region in May 2016, demonstrating that local production had a significant contribution to the high 
concentrations of O3. Based on the aforementioned method, Suciu et al. (2017) innovatively inserted meteoro-
logical parameters into the PCA to restrict the regional background O3 and obtained a more reasonable result. 
The TCEQ regional background O3 estimation method is simpler than PCA but has higher requirements for the 
number of monitoring stations, representativeness of the regional distribution, and the integrity of the monitor-
ing data (Wu et al., 2017). The TCEQ method defines the minimum maximum daily 8h average (MDA8) O3 for 
all monitoring sites in the study area as the regional background O3, and the difference between the maximum 
and minimum values as locally generated O3 (Nielsen-Gammon, Tobin, & McNeel, 2005; Nielsen-Gammon, 
Tobin, McNeel, et al., 2005). Xue et al. used the TCEQ method to study the relative contributions from regional 
background O3 and local formation to the O3 level in Hong Kong and further investigated the long-term trend 
in regional background O3 from 2002 to 2013. They found that the regional background contribution accounted 
for approximately 70% of the total O3, and the increase in regional background O3 concentration was the major 
factor for the increase in urban O3 concentration (Xue et al., 2014). However, estimations of regional background 
O3 derived by different methods have significant differences and uncertainties. It is of scientific significance to 
get an overview of the regional background of O3 levels estimated by different methods and understand their 
variations.

China has experienced significant O3 pollution in recent years, particularly in the North China Plain (NCP) 
region, one of the most economically developed and polluted regions (Ma et al., 2016; Sun et al., 2021). Shan-
dong (SD) is one of the provinces with fast economic development, active anthropogenic activities, high emission 
intensities, and severe air pollution, where the 90th percentile of the annual average MDA8 O3 climbed from 
71.9 ppb in 2015 to 86.8 ppb in 2019 (Zhang et al., 2021). According to the annual air quality report issued by 
the Ministry of Ecology and Environment of China, 2–5 cities were listed among the 20 cities with the worst air 
quality among the 168 key cities during 2018–2020, showing that the air pollution situation in the SD region is 
very serious. SD is a large province, with an area of 155,800 km 2 covering inland and coastal cities. To continu-
ously improve air quality, China issued the Blue Sky Protection Strategy (BSPS) for the years 2018–2020, setting 
targets for reducing emissions and controlling air pollution. Therefore, we choose the years 2018–2020 to inves-
tigate changes in the regional background O3, so that changes in the local generation of O3 can be further esti-
mated, which can be used to get an insight into the effects of BSPS implementation. We used multiple methods, 
including the PCA method, PCL-MLR method, TCEQ method, and background in-situ measurement method 
to quantify the regional background O3 concentrations in the SD region. There are two ways to run PCA, with 
a single variable (only MDA8 O3) and multivariable (MDA8 O3, NO2, wind direction [WD], wind speed [WS], 
and temperature [T]) as inputs, respectively. The results of PCA, PCA-MLR, TCEQ methods, and background 
in-situ measurement were compared. On the basis of the aforementioned analysis, we estimated annual changes 
in the regional background O3 concentrations, their seasonal variations, and their spatial distributions in the SD 
region to evaluate the regional contributions of O3 and provide effective scientific and technological support for 
the mitigation of O3 pollution in the SD province and even other regions.
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2. Methodology
2.1. Data Collection and Preprocessing

Hourly concentrations of O3 and NO2 were collected from 96 Air Quality Monitoring Stations (AQMS) in SD 
Province from 2018 to 2020. These data were measured and released by the China National Environmental Moni-
toring Center (http://www.cnemc.cn). The data processing method used in this study is similar to the process 
reported by Chu et al. (2020). First, we deleted the missing values and zero values of the site data. Second, we 
calculated the efficiency of the data (Shamsipour et al., 2014), and sites with an efficiency lower than 90% were 
excluded. Thus, 66 AQMS were selected after data screening, which covered all cities. Third, the missing values 
and zero values were filled with linear interpolation to calculate MDA8 O3 (Ottosen & Kumar, 2019). For data 
missing for more than 3 consecutive days, linear interpolation was not used, instead, the average of the continuous 
observational data at the remaining sites was used as a replacement for such data. The spatial distribution of these 
sites is shown in Figure 1.

Meteorological data were extracted from the National Centers for Environmental Prediction (NCEP) final oper-
ational global analysis data files with temporal and spatial resolutions of 6  hr and 2.5°  ×  2.5°, respectively 
(https://www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.html). A large subset of these data is available from 
the Physical Sciences Laboratory in its original four-times-daily format and as daily averages. Seven grids cover 
the SD region, and the corresponding grid meteorological data are matched with the AQMS. The meteorological 
data contained three elements: temperature, u-wind, and v-wind; the temperature was derived from the data for 
2 m above ground and both types of wind were set at the 995 sigma level.

2.2. PCA Method

The O3 concentration varies significantly over time and is influenced by the emissions of O3 precursors as well 
as meteorological conditions (J. Z. Wang et al., 2019). When the meteorological conditions are relatively stable, 
O3 concentrations are more likely to be affected by the local emissions and photochemistry (Shan et al., 2009) 
whereas the influence of regional transmission increases as the atmospheric diffusion conditions improve.

Background O3 (defined as the O3 that would be present in the absence of anthropogenic emissions) is typically 
quantified by using chemical transport models (CTMs). The most common approach is the zero-out method 
or tagged method like CAMx-OSAT or CMAQ-ISAM. However, results are uncertain due to potential errors 
in model process description and inputs (Skipper et al., 2021). Many different models have been used to quan-
tify background O3, often providing estimates that differ significantly (Fiore et  al.,  2014; Jaffe et  al.,  2018; 
McDonald-Buller et al., 2011). In addition, if we want to look at the long-term trends of the regional background 

Figure 1. Location of Shandong province; Spatial distribution of the average values of component coefficients (loadings) for PC1, PC2, PC3, and PC4 during 
2018–2020 derived by Method 1. Column length represents the size of the loading. The purple star marks the location of the national background site (Changdao, 
120.7414°E, 38.1872°N).
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O3, it takes huge amounts of time to conduct modeling simulations. Statistical methods based on observations 
provide a way to quantify regional background O3. The basic principle is: The ozone measured at a specific 
site is the sum of the background O3, and the local photochemically generated O3 (Berlin et al., 2013; Langford 
et al., 2009; Suciu et al., 2017). These proportions can be well quantified by using PCA analysis. The regional 
background O3 transported into the area by the larger-scale winds, and over a large region tend to show similar 
patterns at different monitoring sites (Berlin et al., 2013; Liang et al., 2018), which are often shown to be the 
most dominant component (PC1). The PCA method can avoid the interference of complicated meteorological 
conditions and local circulation to a certain extent, but the arithmetic process is relatively complex and has strict 
requirements on the quality of the monitoring network. To strip out the regional background O3, we used the 
PCA method to analyze the multi-site MDA8 O3 and the single-site MDA8 O3 with NO2, WD, WS, and T data 
at various sites in the SD region, and interpreted the results of PCA in combination with meteorological data.

PCA is effective for dimensionality reduction and simplifying the system structure by converting multiple indica-
tors into several uncorrelated comprehensive indicators (principal components) under the premise of less infor-
mation loss through the correlation coefficient (or variance-covariance) matrix (Murtagh & Heck,  1987). In 
general, the first few principal components can explain most of the variance in the original variables, and the 
results of these principal components are used to explain the original observations (Abdul-Wahab et al., 2005). 
PCA can be combined with multiple linear regression (MLR) methods, where the resolved principal components 
are considered as ozone sources, factor scores are considered as independent variables, and pollutant concentra-
tions after normalization are considered as dependent variables, to predict and further determine their contribu-
tions to O3 (Jolliffe, 2005; Statheropoulos et al., 1998).

In this study, PCA was used to calculate the regional background O3 concentration. First, we assumed that all 
stations in the study area were affected by regional transport air mass; therefore, the principal component repre-
senting the regional background could be extracted (Wu et al., 2017). Next, using the prior methods as a reference 
(Langford et al., 2009; Suciu et al., 2017), we used the results of loadings and factor scores to explain which 
principal component represent the regional background and then inversely calculated the regional background 
O3 according to Equation 1. This method has been widely applied in O3 regional background research (Huang 
et al., 2021; Liang et al., 2018; Yao et al., 2021).

𝑂𝑂3 = 𝑂𝑂3 + 𝜎𝜎 (𝑂𝑂3)
∑𝑁𝑁=66

𝐼𝐼
𝑓𝑓𝑖𝑖𝛼𝛼𝑖𝑖(𝑡𝑡) (1)

𝑂𝑂𝑃𝑃𝑃𝑃1

3
= 𝑂𝑂3 + 𝜎𝜎 (𝑂𝑂3) 𝑓𝑓1𝛼𝛼1(𝑡𝑡) (2)

where 𝐴𝐴 𝑂𝑂3 is the mean of the 3-year MDA8 O3 at 66 sites, σ(O3) is the standard deviation of the data set, fi is the 
PCi variance contribution of the results of the PCA, and αi is the daily PCi amplitudes. When PC1 represents the 
regional background, Equation 2 was used to calculate 8-hr regional background O3.

2.3. TCEQ Method

The TCEQ method was proposed by the TCEQ. A rural site in the upwind direction was chosen among all the 
monitoring sites in the study area and the O3 concentration at the site was utilized as the regional background 
(Langford et al., 2009; Wu et al., 2017). Nielsen-Gammon, Tobin, and McNeel (2005) and Nielsen-Gammon, 
Tobin, McNeel, et al. (2005) presented a TCEQ method based on a larger air quality monitoring network, which 
is simpler, more reliable, and more widely adopted, while its disadvantages are manifested in its susceptibility to 
local meteorological conditions and the higher requirements of the monitoring network than PCA. This approach 
calculates the highest 8-hr O3 concentration at each site and uses the lowest 8-hr O3 concentration measured across 
all sites as the regional background value. The improved TCEQ method considers data from a well-established 
monitoring network with good coverage in all directions in the study area, ensuring that at least one site is not 
affected by local emissions regardless of wind direction changes. Additionally, the difference between the highest 
and lowest 8-hr O3 concentrations at each site is defined as the O3 generated by local photochemical reactions. 
The daily 8-hr regional background O3 and locally generated O3 can be calculated by Equations 3 and 4.

𝑂𝑂3(𝑅𝑅) = 𝑂𝑂3 𝑀𝑀𝑀𝑀𝑀𝑀 (3)

𝑂𝑂3(𝐿𝐿) = (𝑂𝑂3 𝑀𝑀𝑀𝑀𝑀𝑀) − (𝑂𝑂3 𝑀𝑀𝑀𝑀𝑀𝑀 ) (4)
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where O3(R) represents the regional background O3, and O3(L) represents the locally generated O3.

2.4. Experimental Design

We conducted three distinct PCA calculations to analyze single and multiple variables determining regional back-
ground O3 concentrations at various stations in the SD region. Method 1 was the most conventional approach. We 
used only MDA8 O3 to run PCA for the selected 66 AQMS in the SD region from 2018 to 2020. Method 2 consid-
ered more information such as meteorological parameters (WD, WS, and T) and precursors (NO2) with fewer 
sites than in Method 1, and these sites were distributed in different regions of the SD region to better represent 
the regional characteristics. We ran five independent PCAs on the selected five sites to extract the regional back-
ground O3 concentrations (Suciu et al., 2017). Unlike Method 1 (single variable, multiple sites) and 2 (multiple 
variables, multiple sites), Method 3 is a relatively innovative method that combines PCA with MLR, usually used 
for pollutant source analysis (Bian et al., 2013; Feng et al., 2020). Method 3 includes three steps. First, assuming 
that regional contribution, local contribution, and other contributions such as sea-land breeze and local small air 
masses are several sources of ozone. Second, using PCA-MLR to analyze MDA8 O3 from 66 AQMS. The PC 
factor score is derived from PCA as the independent variable and the standardization result of the mean value 
of all sites is used as a dependent variable to predict the contribution rate of different sources. Finally, regional 
background O3 was estimated based on the regional contribution rates and factor scores.

In addition, regional background O3 was calculated using the TCEQ method, which is named Method 4 in this 
study. However, considering the influence of the MDA8 O3 minimum data and the location of specific sites on 
the results, we first screened the frequency distribution of the sites with the smallest MDA8 O3 values and found 
that one site (SBQZZ) had the smallest MDA8 value among all the sites on 377 days over 3 years, which could 
not adequately capture regional transport air masses due to the strong titration by intense NO emissions and the 
favorable meteorological conditions. Thus, this site was removed. Second, the remaining data were cleaned  using 
a phase-line approach, deleting outliers higher than Q3 + 1.5 (Q3−Q1) or less than Q1−1.5 (Q3−Q1) from 
the MDA8 O3 sub-data set (Q1 and Q3 represent the first and third quartiles, respectively) (Mousavinezhad 
et al., 2021; Yin et al., 2019). Moreover, to evaluate the reliability of the results of the four distinct methods, the 
regional background O3 was calculated by the different methods and compared with the observations at Chang-
dao station, which was defined as a national background site (http://www.cnemc.cn/zzjj/jcwl/dqjcwl/201711/
t20171108_645109.shtml). Specific information for each method is presented in Table 1.

3. Results and Discussion
3.1. Regional and Local Contributions to MDA8 O3 (Method 1—PCA)

After cleaning the data of all AQMS in the SD region from 2018 to 2020, 66 sites fulfilled the data-quality 
requirements. We ran three independent PCAs on the MDA8 O3 at these sites per year, and only the components 
with eigenvalues greater than 1 were judged as the main components. Results are summarized in Table 2. The 
PCA resulted in four components for MDA8 O3 over 3 years: the first principal component could explain the high-
est (nearly 80%) variance of O3, and the cumulative variance of the four principal components is higher than 90%.

Approach Observational stations Input parameters

Method 1 (PCA) 66 AQMS in the SD region MDA8 O3

Method 2 (pPCA a) 5 AQMS sites in the SD region MDA8 O3, NO2, WD, WS, T

Method 3 (PCL/MLR) 66 AQMS in the SD region MDA8 O3

Method 4 (TCEQ) 65 AQMS in the SD region MDA8 O3

Background measurement Changdao site, Tuoji lsland MDA8 O3

 aTo distinguish PCA in Method 1, pPCA (precise PCA) is used to describe the PCA used in Method 2.

Table 1 
Summary of Parameters for Methods of Calculating Regional Background O3
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A notable clustering phenomenon was observed when we mapped the principal component loadings for each site 
to reveal its spatial distribution characteristics (Figure 1). Different colors represent different principal compo-
nents, and the coefficients ranging from −1 to +1 represent the mean contribution of each component to each 
site during 2018–2020. The length of the column represents the size of the load, with the upward direction 
corresponding to positive values and the downward to negative values. The amplitude (scores) and loads jointly 
determine the daily increase or decrease in the O3 concentration at a specific site. The loading coefficient and 
amplitude with positive and negative values indicate that the O3 concentration increases or decreases at the sites, 
respectively. By comparing the spatial and temporal information provided by the scores and loadings with mete-
orological data such as wind and temperature, the potential physical and chemical processes could be inferred.

The spatial distribution of loadings is shown in Figure 1. Loadings associated with each principal component 
using Method 1 for the specific years 2018, 2019, and 2020 are presented in Table S1 in Supporting Informa-
tion S1. The loadings range from +0.63 to +0.97 and the PC1 averagely accounts for 77.8% of the variance at 
each of the 66 sites. The widespread cluster of PC1 suggests that the O3 and PC1 values at the sites were mostly 
controlled by the regional background O3. This interpretation is supported by Figure 2, which compares the PC1 
amplitudes against the NCEP winds. For PC1, the spatial load coefficients of all sites were positive; according to 
the vector scatter plot of PC1 amplitude and wind speed, the principal components on O3 exceedance days were 
positive as well, indicating that PC1 contributed positively to the O3 concentration at all sites. PC1 represents 
the regional background, and the southerly wind prevails on the day when the O3 exceeds the ambient air quality 
standards of China (∼75 ppb).

The positive loadings of PC2 are distributed in the coastal area, which shows that PC2 contributes significantly to 
the stations in the coastal area and is largely influenced by the sea-land breeze. Based on the relationship between 
PC2 scores and meteorological variables, the influences of WS and WD on PC2 were analyzed. On the monthly 
scale, PC2 scores were low in the high O3 season, which was related to air mass transportation in the eastern 
coastal region. Therefore, we interpreted that PC2 represented mainly the sea-land breeze circulation. The spatial 
distributions of PC3 and PC4 with positive loadings also showed an obvious feature: PC3 was mainly distributed 
in the northern region of the SD region, and PC4 was low in the central region and high on the east and west sides. 
Thus, PC3 and PC4 might be affected mostly by local photochemistry. Based on the temporal variations in PC3 
and PC4 scores and their relationship with the meteorological variables (Figures S2 and S3 in Supporting Infor-
mation S1), there is no clear evidence showing potential influences from either specific meteorology or regional 
transport, which were therefore named as contributions from local generation.

Based on the spatial distribution of the sites in Figure 1, four sites (Weihai: SDFX; Weifang: HTJCZ; Zibo: 
DFHGC; and Liaocheng: QZF) with relatively complete data were selected and marked on the map. The O3 
season (April–September) was used to illustrate the changes from inland to coastal areas. The difference between 
the measurements and the regional background O3 represents the local contribution, which includes not only 
locally produced O3 but also the O3 formed via local circulation. As shown in Figure 3, the local contribution 
increases as the distance to the coast (from Weihai to Liaocheng), which was expected due to the dense anthro-
pogenic emissions in the inland SD region. In summer, the PC2 amplitude was mostly negative (Figure S1 in 
Supporting Information S1), and the local contribution to Weihai becomes negative when O3 from the ocean is 
transported to this region. In April, May, and September, PC2 was generally positive, and the local contribution 
increased in Weihai.

2018 2019 2020

PC Eigenvalue
Variance 

contribution
Cumulative 

variance Eigenvalue
Variance 

contribution
Cumulative 

variance Eigenvalue
Variance 

contribution
Cumulative 

variance

PC1 50.99 72.26 72.26 54.09 81.95 81.95 52.26 79.18 79.18

PC2 5.68 8.60 85.87 4.22 6.40 88.35 4.67 7.07 86.25

PC3 1.98 3.00 88.87 1.66 2.52 90.87 2.39 3.62 89.87

PC4 1.10 1.67 90.54 1.005 1.52 92.39 1.16 1.76 91.63

Table 2 
Results of PCA Analysis (Method 1)
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In addition to the differences in local contributions from inland to coastal, the contribution of sea-land winds 
to coastal cities and locally generated O3 in inland cities was further explored. SD region is usually affected by 
the south-easterly summer monsoon in summer, while coastal areas are also influenced by the sea-land breeze. 

Figure 2. Scatterplots of relations between PC1 amplitudes and mean NCEP reanalysis winds. Solid diamonds represent O3 exceedance days (MDA8 O3 > 75 ppb); 
open diamonds represent O3 non-exceedance days (MDA8 O3 < 75 ppb). (a)–(c) represent 2018–2020, respectively.
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Therefore, we considered the impact of sea-land wind on O3 in coastal cities from June to August 2018–2020, 
and the O3 concentration affected by sea-land wind is calculated using Equations 1 and 2. Its contribution is 
calculated using the average value of ozone concentration in coastal cities, and the results show that the contribu-
tion of sea-land wind to coastal cities in the past 3 years was 4.1%, 2.4%, and 1.8%, respectively. In terms of O3 
exceedance days (with MDA8 O3 larger than 75 ppb), the contribution of sea-land breeze to coastal cities in the 
past 3 years was 0.4%, 0.4%, 1.8%, respectively, which is clearly lower than that without pollution, indicating that 
when ozone pollution occurs, the contribution of sea-land breeze is lower, and is more likely to be affected by 
inland air mass and photochemistry. O3 exceedance days during the ozone season (April–September) were chosen 
to illustrate the contribution of local generation to O3 in inland cities. Results indicate that the local generation of 
O3 during ozone season in 2018, 2019, and 2020 was 35.5%, 29.0%, and 24.7% in 2018–2020, while during O3 
exceedance days, the max contribution of local formation was up to 50.3%, 42.9%, 55.8%, in the year 2018, 2019, 
and 2020, respectively. Regarding the contribution of regional background O3, it can be seen from Figure 3 that 
higher background O3 makes it susceptible for O3 concentrations to exceed the limit when local ozone generation 
is significant. During the O3 season, the average contribution for 2018–2020 is 77.5%. 80.5%, and 83.0%, respec-
tively, while for ozone exceedance days, the increased contribution from local generation leads to a slightly lower 
contribution from the regional background, 76.1%, 79.1%, and 80.3% for 2018–2020, respectively.

As shown in Figure 4, the seasonal variations in the regional background O3 showed the characteristic pattern 
of summer > spring > autumn > winter from 2018 to 2020. The regional background O3 ranged from 28 to 71 
ppb. The seasonal variation of background O3 is the highest in summer, during which background O3 arises from 
biogenic emissions of NOx and VOCs peaks (Chang et al., 2014; Y. Wang et al., 2011). In terms of interannual 

Figure 3. Daily 8-hr maximum O3 measured at Liaocheng (a), Zibo (b), Weifang (c), and Weihai (d), compared with the 
regional background O3 from inland to coast derived from PCA. The green line represents the observed O3 concentration 
in the city; the orange line represents the regional background O3; the blue dashed line represents the ozone exceedance 
limit. The dotted line represents the local contribution defined as the difference between the measurements and the regional 
background O3.
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variation, the regional background O3 decreased slightly in spring and summer and increased slightly in autumn 
and winter during the investigated years. Based on the principle of Method 1, the trend of the regional background 
ozone basically depends on αi, which is output by PCA, indicating that the relative contribution of each station 
during the investigation could be greater or less than the average contribution, so that the regional background 
O3 calculated by this method could have a consistent trend with the input observational data. During the study 
period (2018–2020), the regional background O3 across four seasons was found to change by −5.1, −3.8, 1.4, and 
0.8 ppb, respectively.

3.2. Regional and Local Contributions to MDA8 O3 (Method 2—PCA)

Method 2 differs from Method 1 because it uses not only MDA8 O3 but also considers both O3 precursors (NO2) 
and meteorological variables (WS, WD, and T), and selects fewer sites (five sites) with required site distribu-
tion. Additionally, site distribution is required, and data must be complete. Data from five sites were used for 
the analysis: Zibo, Qingdao, Taian, Weihai, and Binzhou. PCA was performed on the five parameters: MDA8 
O3, daily mean NO2, WD, WS, and T for the five sites from 2018 to 2020; the meteorological data sources were 
the daily mean data from the NCEP reanalysis data. Results are shown in Table 3, where two components with 

eigenvalues greater than 1 were extracted for each site, and the eigenval-
ues of PCs from each site were similar; the mean value was approximately 
1.6. The first component explained approximately 40% of the variance in 
the original variables, and the second component explained approximately 
25% of the variance, indicating that both PCs were important in explaining 
the  original  variables.

We infer the meaning of the components by considering the relationship 
between each principal component loading (absolute values greater than 
or equal to 0.5) and the variables. From the loadings of the two principal 
components at each site (Table  4), a clear pattern emerges: for each site, 
PC1 has high loadings on the factors O3, NO2, and T, reflecting the chemical 
photochemistry; PC2 at all sites had larger values on the factors NO2 and 
WS, reflecting the physical transport process under the impact of local mete-
orology. Taking Weihai as an example, we further demonstrated the influ-
ence of local meteorological circulation. PC1 increases with O3 and T but 
reduces with the decrease of NO2 (Figure S4 in Supporting Information S1), 
which reflects the large-scale O3 photochemical production. PC2 scores did 

Figure 4. Regional background O3 in different seasons of 2018–2020 (Method 1—PCA).

City PC Eigenvalue Variance contribution Cumulative variance

Zibo PC1 2.324 46.475 46.475

PC2 1.106 22.122 68.597

Qingdao PC1 2.071 41.420 41.420

PC2 1.170 23.405 64.825

Taian PC1 2.390 47.796 47.794

PC2 1.140 22.810 70.604

Weihai PC1 1.835 36.692 36.679

PC2 1.275 25.508 62.201

Binzhou PC1 2.155 43.092 43.092

PC2 1.224 24.486 67.579

Table 3 
Results of PCA Analysis (Method 2)
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not have a significant relationship with T and they increased with WS (Figure S5 in Supporting Information S1), 
which reflects regional transport effects. Thus, further evidence suggests that PC1 and PC2 were primarily asso-
ciated with chemical and physical processes, respectively.

Finally, based on the PCA results, referring to the method of Suciu et  al.  (2017), the PC scores for regional 
background O3 were substituted as the mean of PC2 scores at each site, and the PC scores for local contributions 
were replaced by the mean of PC1 scores at the site, and the cumulative contribution of the PCs was replaced 
by the results of the standardization of each component. Based on this method, the regional background O3 was 
back-calculated, and the results are shown in Figure 5. Compared with other methods, there were no significant 
seasonal changes. This is mainly because this method considers five sites, and the deviation is relatively small. 
That is, the estimated regional background O3 fluctuates around the mean observed ozone value at all stations 
during the study period, and the regional background O3 was approximately 51 ppb in each season. The regional 
background O3 almost kept constant during 2018–2020.

3.3. Regional and Local Contributions to MDA8 O3 (Method 3—PCA/MLR)

PCA/MLR (Method 3), as a relatively novel method, uses the idea of source resolution and continues to use 
MLR to estimate the O3 regional background based on the results of Method 1 (PC1 represents the regional back-
ground). Using the factor score of Method 1 as the independent variable, and the standardized results of the mean 
MDA8 O3 of 66 AQMS sites in the SD region as the dependent variable, after MLR processing, the contribution 
proportions of the 2018–2020 regional background O3 were obtained as follows: 60.2%, 57.3%, and 57.3%, with 

City

PC1 PC2

O3 NO2 T WD WS O3 NO2 T WD WS

Zibo 0.916 −0.674 0.881 0.498 0.081 0.091 0.403 0.014 0.490 −0.834

Qingdao 0.775 −0.582 0.900 0.561 −0.087 0.213 0.596 −0.005 0.199 −0.854

Taian 0.892 −0.726 0.922 0.443 0.139 0.142 0.426 0.036 0.581 −0.775

Weihai 0.731 −0.210 0.807 0.662 −0.409 0.031 −0.854 0.112 0.009 0.729

Binzhou 0.922 −0.488 0.909 0.484 0.075 0.087 0.695 −0.050 0.704 −0.486

Table 4 
Loading or Correlations of Components With Variables at Each Site From Method 2

Figure 5. Regional background O3 during different seasons of 2018–2020 (Method 2—PCA).
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a decrease in the latter 2 years, compared to 2018; the regional background O3 was then calculated using eqn. 
10 of Bian et al. (2013), results are shown in Figure 6. The seasonal pattern of regional background O3 remained 
consistent with that of Method 1, but the annual variation varied slightly by season, especially in summer, for 
which there was a decreasing trend from year to year, mainly because of the interannual decreasing regional 
background contribution and the decreasing O3 concentration. In contrast, the calculated regional background 
contribution of ozone derived by Method 1 was found to be higher in the summer of 2019 than in 2018 such that 
the estimated regional background O3 exhibited an increase.

3.4. Regional and Local Contributions to MDA8 O3 (Method 4—TCEQ)

The TCEQ method was also used to estimate the regional background O3 in the SD region. Since the lowest 
MDA8 O3 at the AQMS selected by the TCEQ method represents the regional background concentration, to 
reduce the inaccuracy caused by the specific site, the distribution of the minimum MDA8 O3 at all sites was calcu-
lated to ensure that it would not be affected by a single low-value site. Figure 7 shows the regional background O3 
derived by the TCEQ method from 2018 to 2020, ranging from 12.6 to 49.8 ppb. It can be observed that the O3 
pattern of summer > spring > autumn > winter exhibited trends. Summer and autumn show an increasing trend 
followed by a decrease while the other two seasons present the opposite pattern. Overall, they all show a slightly 
increasing characteristic across four seasons over the 3 years, rising by −0.3, 1.5, 1.7, and 1.8 ppb, respectively. 
The results are slightly different from that was calculated by PCA from Method 1, the results in summer also 
showed a rising characteristic followed by decreasing, but exhibited an overall decline trend from 2018 to 2020.

To further illustrate the contribution of regional background O3 to coastal and inland cities in different years and 
seasons, the mean MDA8 O3 was calculated for all AQMS in coastal and inland cities in the SD region, and the 
ratio of the regional background O3 to the mean MDA8 O3 was defined to reflect the magnitude of the contri-
bution of the regional background O3. As shown in Table 5, the contribution of the regional background to the 
coastal cities is higher than inland, which is consistent with the conclusion in PCA Method 1 that the local contri-
bution from the coast to the inland is increasing. Regarding interannual variability, the regional contribution of O3 
to both showed an increasing pattern, and for seasonal variability, it decreased sequentially from spring to winter.

3.5. Comparisons Among Multiple Methods

Due to the differences in the principles used to estimate the regional background O3 concentrations, there were 
differences in the calculated results. In general, the results of Methods 1 and 2 were approximately 20 ppb larger 
than those of Method 3 and the TCEQ, but they are closer to the background site. Additionally, Method 2 has a 

Figure 6. Regional background O3 in the seasons of 2018–2020 (Method 3—PCA/MLR).
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smooth seasonal trend, with results that are marginally higher than the background site results in the autumn and 
winter. Therefore, the results of Method 1 were chosen as being more accurate for estimating the regional back-
ground O3. For Method 3, this difference was mainly because after the MLR processing, the resulting regional 
contribution decreased, to only about 60%. Thus, the lower regional background O3 levels were estimated. In the 
TCEQ method, the lowest MDA8 O3 was selected to represent the regional background, and the selected site may 
be influenced by urban sites that do not capture the regional background well and are therefore lower in magni-
tude compared with Methods 1 and 2.

As shown by the prior analysis of the results, the seasonal changes of the regional background O3 were generally 
consistent across the three methods, with a clear monthly variation except for Method 2, which adds meteoro-
logical parameters as constraints and has a smooth trend. This phenomenon may be because Method 2 considers 
the meteorological factors of the station, indicating that the main component of the regional background value 
has almost no relationship with temperature. Therefore, there are no obvious monthly variations. The results of 
each method for interannual variability are presented in Table 6. Methods 1 and 3 use different analysis methods 
for the same data set, the annual changes for both are consistent, showing a slight decrease of 1.8 and 2.4 ppb 
for each of the 3 years. The results of Method 2, the TCEQ method, and the background sites show a consistent 
pattern of increasing and then decreasing, but overall, the values increase by 0.7, 0.4, and −0.8 ppb, respectively, 
over the 3 years. Although the annual changes vary among different methods, an overall increase in the estimated 
regional background O3 during the past 3 years can be consistently observed. Additionally, to reduce the error of 
a single method, the average value of the aforementioned results is expressed as the regional background O3 in 
the SD region in the past 3 years, which were 41.6, 41.9, and 40.9 ppb, respectively, and the 3-year average value 
is 41.5 ppb.

3.6. Comparisons With Previous Studies

Figure  8 summarizes the regional background O3 concentrations reported 
in previous studies estimated by different methods around the world. We 
compared the results of this study with other studies (Berlin et  al.,  2013; 
Huang et al., 2021; Liang et al., 2018; Sahu et al., 2021; Souri et al., 2016; 
Suciu et al., 2017; Y. Wang et al., 2011; Xue et al., 2014). Method 2 is refer-
enced in Suciu's Approach B. In our results, PC2 represents the regional back-
ground, which differs from the results of Suciu et al. (2017), and the seasonal 
variation in regional background O3 is not significant but remains similar in 
terms of magnitude. Compared with the results of Berlin et al. (2013), the 

Figure 7. Regional background O3 in the seasons of 2018–2020 (Method 4—TCEQ).

Season

Coastal cities Inland cities

2018 2019 2020 2018 2019 2020

Spring 65.1% 66.8% 72.0% 62.2% 63.6% 67.1%

Summer 57.6% 61.9% 63.7% 47.0% 52.2% 55.6%

Autumn 43.1% 54.7% 45.4% 42.8% 54.2% 44.0%

Winter 41.8% 43.2% 52.7% 41.3% 41.9% 51.1%

Table 5 
Contribution of Regional Background O3 to Coastal and Inland Cities in the 
Seasons of 2018–2020
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region background O3 is calculated by the same method, and both exhibit larger PCA results than those of TCEQ, 
by roughly 8.2 ppb. Our results are lower than those of Souri et al. (2016), focused on the regional background 
O3 under different wind directions and showed that the regional background O3 was greatest with east-northeast 
winds. The results of Liang et al. and Huang et al. do not provide specific regional background O3 concentrations 
but report ranges of 32.1–72.2 and 31.0–102.6 ppb, respectively. The maximum values are higher than the overall 
average value because both study periods are in the O3 season. In addition, we also compared with results from 
modeling studies. Sahu et al. (2021) simulated the regional background O3 across China using the CMAQv5.2 
model and found that in the SD region, the regional background O3 ranged from 21 to 33.6 ppb in 2015, account-
ing for 71%–94% of the observed O3 concentration, and the seasonal characteristics are consistent with this study. 
Wang et al. used the nested-grid GEOS-Chem model and found that the annual mean regional background O3 
over China was 44.1 ppbv in 2006, while in SD it ranged between 30 and 50 ppbv. Slightly different from this 
study, the results of Wang et al. showed higher background O3 in spring than in summer, mainly because spring 
can be attributed to enhanced stratosphere-troposphere exchange (Y. Wang et al., 2011). Overall, our results are 
comparable with previous results but provide more insights into the O3 pollution in the SD region.

4. Conclusions
Three PCA methods with different parameters and the TCEQ method were used to estimate the regional back-
ground O3 concentration in the SD region, where O3 pollution is severe in recent years. The regional background 
O3 calculated using different PCA and TCEQ methods did not differ significantly and showed an overall consistent 
trend. Method 1 is the most commonly used method for resolving regional background O3 using PCA and produces 
the highest regional background O3 concentration. Method 2 incorporates O3 precursor (NO2) and meteorological 

Method

2018 2019 2020 Average

AVE SD AVE SD AVE SD AVE SD

Method 1 (PCA) 52.8 21.5 52.5 23.2 51.0 21.7 52.1 21.7

Method 2 (pPCA) 50.4 4.9 51.4 4.9 51.1 4.8 51.0 4.9

Method 3 (PCL/MLR) 32.5 21.4 31.6 19.6 30.1 18.4 31.4 19.5

Method 4 (TCEQ) 30.9 14.6 32.1 14.9 31.3 14.3 31.4 14.4

Average 41.6 19.7 41.9 19.8 40.9 18.2 41.5 4.9

Background site 50.6 22.0 52.9 21.9 49.8 19.3 51.1 21.1

Note. AVE represents the average value of a method for a given year. SD represents the standard deviation of a method for 
a given year.

Table 6 
Comparison of All Approaches in This Study and the Literature

Figure 8. Comparisons between this study and previous results,  aO3 data using MDA8 (multi-site).  bO3 data using 
MDA8 (single-site).  cSame as b, but less time period is used.  dO3 data using hourly measurements.  eConstrained by wind 
direction from east-northeast.  fConstrained by wind direction from east-southeast.  gConstrained by wind direction from 
south-southeast. *Model-based results.

 21698996, 2022, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

036809 by U
niversity O

f T
ennessee, K

noxville, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

WANG ET AL.

10.1029/2022JD036809

14 of 15

parameters as constraints and yields a flat monthly trend. Method 3 combines PCA with MLR and resolves relatively 
lower O3 background concentrations, which makes it close to the result of the TCEQ method. The results of the four 
methods are similar and slightly different. Based on the results of the four methods and ozone concentration from 
national background sites, the 3-year regional background O3 showed an overall slightly increasing pattern, and the 
3-year average values for Methods 1, 2, 3, 4, and in-situ background measurement were 52.1 ± 21.7, 51.00 ± 4.9, 
31.4 ± 19.5, 31.4 ± 14.4, and 51.1 ± 21.1 ppb, respectively. There was a clear seasonal pattern of regional back-
ground O3, with high values in spring and summer and low concentrations in autumn and winter. Overall, we recom-
mend Method 1 among all the four methods because results derived from it are most close to the national background 
site observations, in terms of seasonal trends and the scale of regional background O3. Furthermore, the regional 
background O3 differs spatially from the eastern coastal area seeing more influences from the marine environment. 
The concentration of locally generated O3 gradually increased from coastal to inland cities while the opposite was 
observed for regional ozone contribution. Uncertainties exist in terms of estimating the regional background O3 
concentrations. Additional factors can also be considered for multivariate analysis, such as adding constraints to the 
precursor (e.g., VOCs) and additional relevant meteorological variables (e.g., solar radiation and relative humidity). 
Further research is necessary to reduce these uncertainties in the future.
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