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A B S T R A C T   

Current machine learning (ML) applications in atmospheric science focus on forecasting and bias correction for 
numerical modeling estimations, but few studies examined the nonlinear response of their predictions to pre-
cursor emissions. This study uses ground-level maximum daily 8-hour ozone average (MDA8 O3) as an example 
to examine O3 responses to local anthropogenic NOx and VOC emissions in Taiwan by Response Surface 
Modeling (RSM). Three different datasets for RSM were examined, including the Community Multiscale Air 
Quality (CMAQ) model data, ML-measurement-model fusion (ML-MMF) data, and ML data, which respectively 
represent direct numerical model predictions, numerical predictions adjusted by observations and other auxiliary 
data, and ML predictions based on observations and other auxiliary data. 

The results show that both ML-MMF (r = 0.93–0.94) and ML predictions (r = 0.89–0.94) present significantly 
improved performance in the benchmark case compared with CMAQ predictions (r = 0.41–0.80). While ML- 
MMF isopleths exhibit O3 nonlinearity close to actual responses due to their numerical base and observation- 
based correction, ML isopleths present biased predictions concerning their different controlled ranges of O3 
and distorted O3 responses to NOx and VOC emission ratios compared with ML-MMF isopleths, which implies 
that using data without support from CMAQ modeling to predict the air quality could mislead the controlled 
targets and future trends. Meanwhile, the observation-corrected ML-MMF isopleths also emphasize the impact of 
transboundary pollution from mainland China on the regional O3 sensitivity to local NOx and VOC emissions, 
which transboundary NOx would make all air quality regions in April more sensitive to local VOC emissions and 
limit the potential effort by reducing local emissions. 

Future ML applications in atmospheric science like forecasting or bias correction should provide interpret-
ability and explainability, except for meeting statistical performance and providing variable importance. 
Assessment with interpretable physical and chemical mechanisms and constructing a statistically robust ML 
model should be equally important.   

1. Introduction 

Air pollution has gained great attention owing to its adverse effects 
on human health (Apte et al., 2018; Kuo et al., 2021), climate (Dong 
et al., 2019), agriculture (Tai and Martin, 2017), ecosystems (Zarnetske 
et al., 2021), and visibility (Huang et al., 2014). In regional air quality 
management, controlling local anthropogenic emissions is a common 
way to improve regional air quality. Predicting air quality under 
designed emission control scenarios by using chemical transport models 
(CTMs) like the Community Multiscale Air Quality (CMAQ) model has 
been much studied (Arnold and Dennis, 2006; Che et al., 2011). 

Moreover, to meet the prompt and various needs of policymakers, 
response surface modeling (RSM) was developed to assess the improved 
or changed air quality based on designed emission control strategies 
without extra CTM simulations. That is, RSM can retrieve the nonlinear 
equation between ambient air pollutant concentrations (e.g. O3) and 
multiple precursors emissions (e.g. NOx and VOCs) from multiple 
emission sources based on an ensemble of CTM simulations with 
changing O3 precursors emissions (Wang et al., 2011; Xing et al., 2018; 
Zhu et al., 2015), and the user can apply the retrieved nonlinear equa-
tion to timely estimate the changed air pollutant concentrations based 
on input emission ratios and support emission control strategies. For 
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example, RSM has been intensively applied to assess the NOx and VOC 
emission control strategies of O3 pollution (Li et al., 2022; Xing et al., 
2018; Zhao et al., 2015). RSM can identify ambient O3 sensitivity to NOx 
and VOC emission by O3 isopleth and further classify the isopleth re-
gimes into two chemical regimes, NOx-limited and VOC-limited. In the 
NOx-limited regimes, O3 increases with increased NOx emissions and 
exhibits limited response to VOC emissions, and vice versa. Classifica-
tion of the O3 formation regime in the isopleth can assist policymakers to 
determine whether NOx or VOC emissions should be controlled prefer-
entially in emission control strategies (Gipson et al., 1980). However, 
although RSM was employed to improve regional air quality in several 
previous studies, these studies were still based on simulated results and 
neglected the bias between the modeled estimations and observations in 
the benchmark case (Kelly et al., 2021; Li et al., 2022; Xing et al., 2022), 
which could largely affect the nonlinearity between pollutants and 
precursor emission changes. 

To forecast air quality and support air quality policies, machine 
learning (ML) or machine intelligence has been rapidly developed and 
intensively implemented in environmental science and air quality 
management (Kang et al., 2018; Zheng et al., 2021). ML in atmospheric 
science applications for predicting air quality is mostly driven by his-
torical air quality data, real-time monitoring data, measurements, sat-
ellite images, land-use information, or emission activity-related indices. 
ML is relatively easy to execute and can provide more accurate pre-
dictions compared with CTMs, which still need complicated data- 
preparing processes and computationally-intensive time and resources, 
and have a larger modeling bias. However, ML is also debated and re-
mains low persuasiveness due to its black-box modeling process and 
failure to provide interpretability and explainability concerning phys-
ical/chemical mechanisms (Fu et al., 2022; Zheng et al., 2021). 

In previous applications, ML can serve as a bias corrector to adjust 
modeling results. Several measurement-model fusion (MMF) (Fu et al., 
2022) techniques in post-analysis have been developed in recent years to 
adjust CTM results based on observations (Geng et al., 2020; Lu et al., 
2020; Requia et al., 2020; Sayeed et al., 2021). Air pollutant estimations 
without correction by observations could underestimate or overestimate 
improved air quality and derived environmental benefits (Fu et al., 
2022). In addition, ML can also forecast air quality based on historical 
observations and other auxiliary data (e.g. meteorological and land-use 
data) without involving CTM results and still have good performance 
(Ausati and Amanollahi, 2016; Song et al., 2015; Zhou et al., 2019). 
However, whether ML either serves as a bias corrector or a forecaster, 
few ML studies examined pollutants’ sensitivity to their precursor 

emissions based on observation-corrected results. 
In this study, we used the maximum daily 8-hour O3 average (MDA8 

O3) as the target index and selected Taiwan as the study region due to its 
island geography, high-density air quality monitoring stations (n = 73), 
and three-year-updated emission inventory. The goal of this study is to 
(1) verify the capability of ML to correct CMAQ modeling results 
(denoted as ML-MMF data) and predict MDA O3 without CMAQ- 
modeled results (denoted as ML data) in the benchmark-case modeling 
performance and (2) examine O3 nonlinear responses to all anthropo-
genic NOx and VOC emission ratios by O3 isopleths by using CMAQ, ML- 
MMF, and ML modeling results. 

2. Methodology 

The technical work is illustrated in Fig. 1. Three types of data 
(CMAQ, ML-MMF, and ML) were prepared for RSM; CMAQ data were 
direct outputs from CMAQ-modeled results; ML-MMF data are the cor-
rected estimates by observation and CMAQ inputs (emissions, boundary 
conditions, meteorology, and land-use), and the constructed model was 
employed to predict O3 based on the changed CMAQ outputs, the other 
CMAQ inputs and changed emissions (kg/day) under different emission 
scenarios; ML outputs are predictions constructed by using O3 obser-
vations and CMAQ inputs, and the constructed model was utilized to 
predict O3 based on the changed emissions (kg/day) and the other 
CMAQ inputs under different emission scenarios. Second, RSM was 
executed for each dataset to predict O3 under different NOx and VOC 
emission ratios in proportion to the baseline emissions (emission ratio =
1) in the benchmark case. O3 isopleths were finally constructed for each 
dataset and were validated by out-of-samples and observations. 

2.1. Data preparation 

Air quality regions in this study were categorized into six regions: 
Northern (NT), Chu-Miao (CM), Central (CT), Yun-Chia-Nan (YCN), 
Kao-Ping (KP), and Eastern (ET). A total of 73 air quality monitoring 
stations with hourly O3 measurements were included (Fig. 2). The 
modeling period included January, April, July, and October 2016 to 
represent different seasons. Meteorological fields were firstly simulated 
by WRF (version 3.8), and hourly O3 concentrations were simulated by 
the CMAQ model (version 5.2) with the gas-phase chemistry module, 
Carbon Bond 6, (Sarwar et al., 2008) and aerosol module, AERO6 (Appel 
et al., 2013) mechanisms. The configurations of the simulation domain 
nested four layers from East Asia (81 km × 81 km) to Taiwan island (3 

Fig. 1. Technical flowchart of this study.  
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km × 3 km) which covers 90 (row) × 135 (column) horizontal grid cells 
(Lai and Lin, 2020). Daily emission data from Taiwan Emission Data 
System (TEDS) version 10.0 with 3 km × 3 km resolution developed by 
Taiwan EPA including industrial, mobile, fugitive, and biogenic sources 
were used. Before CMAQ modeling, emission distribution and speciation 
were processed by the USEPA SMOKE program (U.S. EPA, 2018), which 
can apply temporal and spatial allocation and chemical speciation for 
industrial, mobile, and fugitive sources from TEDS. The modeling per-
formance assessment of meteorology factors and CAMQ-modeled O3 are 
shown in Tables A1 and A2, respectively. 

The details of the developed ML-MMF and ML framework were 
illustrated in Appendix I, and the major difference between ML-MMF 
and ML framework is predicting O3 with and without CMAQ direct 
outputs for prediction, as shown in the following conceptual equations: 

MLMMF O3 predictions = f(CMAQ, Emis, BC,Met, Land)

ML O3 predictions = f(Emis, BC,Met, Land)

where CMAQ is CAMQ output; Emis are emission data (kg/day); BC are 
boundary conditions; Met are meteorological variables; Land are land- 
use variables. A total of 4039 grid cells with local emission, meteo-
rology, and land-use information was considered. Basically, Both ML- 
MMF and ML models employed five techniques including the k-near-
est neighbors’ regression (KNN) (Kramer, 2013), regression tree (RT) 
(Loh, 2008), random forest (RF) (Deng et al., 2001), gradient boosted 
tree models (GBM) (Natekin and Knoll, 2013), and convolutional neural 
network (CNN) (Albawi et al., 2017), which can construct the nonline-
arity between input variables (emissions, boundary conditions, meteo-
rology, and land-use data) and observed O3 concentrations in the 
benchmark case. The best model with higher accuracy, reasonable 
spatial predictions, and no overfitting tendency was selected to predict 

Fig. 2. Air quality monitoring stations (n = 73) and six air quality regions in Taiwan.  
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O3 concentrations (Appendix I); 60% and 40% of the data set were 
selected as the training dataset and the testing dataset, respectively; The 
10-fold cross-validation was also conducted to optimize hyper-
parameters of the training dataset based on the uncertainty of modeling 
performance. The selected model for ML-MMF and ML would be further 
utilized to predict O3 based on CMAQ outputs (not for the ML model), 
the changed emissions (kg/day), and the other fixed auxiliary data 
(boundary conditions, meteorology, and land-use data) under different 
emission scenarios. 

The variables selected for ML-MMF and ML were related to emissions 
of precursor species including NOx and VOCs, boundary conditions that 
affect the background level of O3, NOx, and VOCs, meteorological fac-
tors involved with photochemical reactions and transport fluxes of air, 
and time-independent land-use geographical information (Table 1). 
Boundary conditions are the averaged values of all the grid cells around 
the modeling domain, and the temporal variations of meteorological and 
air pollution information during modeling period were considered. 
Meteorological factors on 850 hPa and 690 hPa represent the weather 
conditions of the mixing layer and lower troposphere layer (Lu et al., 
2021). MDA8 O3 would be the dependent variable because O3 concen-
trations usually are higher during the daytime due to the existence of 
ultraviolet energy (Ware et al., 2016). For each month, the modeling 
performance was evaluated by correlation coefficient (r), mean absolute 
error (MAE), and root mean square error (RMSE) as shown in the 
following equation. 

r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[∑n
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√
√
√
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where Mij is the modeled O3 for i th station in j th day; Oij the observed 
O3 for i th station in j th day; M is the average of modeled O3 for all 

stations; M is the average of observed O3 for all stations; N is the number 
of stations; M is the number of days. 

2.2. Response surface modeling (RSM) 

RSM can retrieve non-linear O3 responses to anthropogenic NOx and 
VOC emission ratios, which are changed ratios of emission compared 
with baseline emission in the benchmark case (emission ratio = 1). First, 
to generate the control matrix of anthropogenic NOx and VOC emission 
ratios for each air quality region, the Latin hypercube sampling (LHS) 
method was utilized to estimate enough sample size of the number of 
CMAQ simulations for RSM while providing enough statistical power 
and saving computing resources. The LHS design can provide flexibility, 
which selects a number of runs based on limited computing resources 
(USEPA, 2006), and also can capture the nonlinearity of ozone. The 
number of CMAQ runs for RSM was decided by the emission ratio range 
(0 %–200 %) and a number of control sectors such as power plants and 
mobile sources, the accuracy of O3 response to NOx and VOC emissions, 
and the available computing resources. Typically, the number of CMAQ 
runs for RSM around 50 simulations is enough for constructing a sta-
tistically robust model (Li et al., 2022). Extra simulations for individual 
air quality regions were also conducted due to higher O3 concentrations 
in spring, fall, and winter. Emission ratios of NOx and VOC are designed 
from 0% to 200%, and the number of CMAQ runs for six air quality 
regions is shown in Table A3. 

In each air quality region, RSM involves multiple precursor emissions 
(NOx and VOC) and anthropogenic emission sectors (industrial, mobile, 
and fugitive sources) from multiple cities and counties, as shown in 
Fig. A1 and Table A4. Multiple city/county-level NOx and VOC emission 
sectors (Table A4) were used for each air quality region. Self-adaptive 
RSM (SA-RSM) based on regression method and stepwise selection 
was employed to predict O3 based on designed emission ratios of NOx 
and VOC, and the followed multidimensional kriging method was used 
to illustrate O3 isopleths to show O3 nonlinear response to NOx and VOC 
emission ratios (Li et al., 2022; USEPA, 2006; Xing et al., 2019, 2018). In 
each air quality region, the averages of grid cells with daily MDA8 O3 
higher than 60 ppb were used for RSM based on WHO and Taiwan EPA 
standards (World Health Organization, 2005). Also, higher O3 concen-
trations were identified to be more sensitive to anthropogenic emissions 
of NOx and VOC (Xing et al., 2011). In each region, the following 
equation linking the O3 concentration (ΔConc) in each grid to city/ 
county-level NOx or VOC emission ratios of the emission sectors and 
stepwise selection that can automatically select polynomial variables for 
all grid cells with 0.15 of the entering level and the leaving level were 
utilized (Li et al., 2022): 

ΔConc(m, n) =
∑k

i=1
Xi • (ΔEi)

ai +
∑k

i=1

∑k− 1

j=1
Xij • (ΔEi)

bi
(
ΔEj

)cj  

where ΔConc is the changed daily MDA8 O3 concentration (response) 
from the baseline scenario (the benchmark case, emission ratio = 1) in 
the grid (m, n); ΔEi is the changed emission ratios from 1 of k city/ 
county-level NOx or VOC emission sectors; ΔEj is the other changed 
emission ratios from 1 of emission sector other than ΔEi; ai, bi, and cj are 
the nonnegative integer powers of ΔEi and interaction terms of ΔEi and 
ΔEj. We set ai from 1 to 3 and bi and cj from 1 to 2, respectively. A total of 
2782 CMAQ simulations were used for RSM. To assure the performance 
of RSM, a total of 107 CMAQ simulations were used for out-of-sample 
validation (Table A3). The out-of-samples were randomly selected 
based on the specified emission ratios (0 %–200 %) by the LHS method 
as well. The RSM performance was evaluated by correlation coefficient 
(r), Mean normalized error (Mean NE), and Maximum NE (Max NE) 
(Xing et al., 2018) as shown in the following equations. 

Table 1 
Selected variables for ML-MMF and ML model.  

Dataset Source Variables 

Emission TEDS 10 NOx and VOCs emissions from point, mobile, 
fugitive, and biogenic sources (g/s).  

Boundary 
conditions 

WRF/ 
GEOS- 
Chem 

air temperature (850 and 690 hPa) (K), relative 
humidity (850 and 690 hPa)(%), NO3, HNO3, 
N2O5, NO, NO2, VOCs and O3 at surface level 
(ppmV)  

Meteorological 
variables 

WRF Surface Surface pressure (Pa), PBL height 
(m), temperature at 2 m (K), 
mixing ratio at 2 m (unitless), 
wind speed (m/s), U wind 
component and V wind 
component (m/s), solar radiation 
reaching ground (W/m2), 
precipitation (cm), total cloud 
fraction (unitless), average liquid 
water content of cloud (g/m3) 

Pressure 
level 
(850 and 
690 hPa) 

Air temperature (K), potential 
vorticity (m2K/kg/s), vertical 
velocity (m/s), U wind component 
and V wind component (m/s)  

Land-use CMAQ Elevation (m), urban percent (%)  
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r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[∑N
i=1(Mi − M)(Oi − O)

]

∑N
i=1(Mi − M)

2∑N
i=1(Oi − O)

2

√

Mean NE =
1
N

∑N

i=1

|Mi − Oi|

Oi  

Max NE = max
(
|Mi − Oi|

Oi

)

where Mi and Oi are the average of grid cells for RSM predictions and 
CAMQ, ML-MMF, or ML predictions in the ith simulation over different 
emission scenarios; N is the number of scenarios; M and O are the 
average of the RSM predictions and CAMQ, ML-MMF, or ML predictions 
in the ith simulation over different emission scenarios. 

Finally, the response of O3 concentrations to changes in anthropo-
genic NOx and VOC emission ratios from all sources and all cities and 
counties in each air quality region was illustrated by O3 isopleths, which 
can be divided into NOx-limited (NOx-sensitive and VOC-rich) and VOC- 
limited (VOC-sensitive and NOx-rich) regimes and used to help deter-
mine whether NOx or VOC emissions should be controlled more 
aggressively in strategies to alleviate ground-level O3 concentrations 
(Gipson et al., 1980). 

3. Results and discussion 

3.1. Benchmark case modeling performance 

The performance of CMAQ, ML-MMF, and ML modeling compared 
with observations is shown in Table 2. Compared with ML-MMF and ML 
predictions, the CMAQ predictions have lower performance for all 
months (r = 0.41–0.80, RMSE = 13.45–21.19 ppb). After CMAQ data 
were adjusted by the auxiliary data (emission, meteorology, boundary 
condition, and land-use data) and corrected by observations, ML-MMF 
modeling presents significantly better performance for all months (r 
= 0.93–0.94, RMSE = 4.49–7.43 ppb). The improved performance 
highlights the benefits of adding auxiliary data in ML-MMF applications. 

Even though excluding CMAQ output and purely using auxiliary data for 
ML modeling, the ML model still maintains comparable modeling per-
formance (r = 0.89–0.94, RMSE = 4.62–8.94 ppb). Both ML-MMF and 
ML have no overfitting tendency considering their similar performance 
in training and testing data. Averages of observed and modeled MDA8 
O3 for CMAQ, ML-MMF, and ML in selected months are presented in 
Fig. 3. Fig. 3(a) shows obvious overestimations of CMAQ compared with 
observations, especially in the regions along with the west side of the 
mountains and the central basin. Fig. 3(b)(c) shows the ML-MMF and ML 
estimations are much close to observations and have lower modeling 
bias (RMSE and MAE) compared with CMAQ. 

Monthly concentrations of CMAQ, MMF, and ML are presented in 
Fig. A2. Among all selected months, Fig. A2(a) shows CMAQ remain 
overestimated in all months and has spatial specificity in each month, in 
which CT, YCN, and KP region are overestimated in January, NT, CM, 
and CT regions are overestimated in April, and whole west regions 
overestimated in July and October. On the other hand, Fig. A2(b)(c) 
shows the ML-MMF model and ML model present similar spatial distri-
butions for all months except for the ET region in July and October. The 
different estimations in the ET region are due to fewer air quality 
monitoring stations in the region, so the ML model needs to learn the 
data from the monitoring sites in the western regions. 

3.2. Adjusted O3 seasonal patterns 

In Taiwan, frequent long-range transboundary pollution events from 
mainland China with higher air pollutant concentrations occur in spring, 
fall, and winter when northeast monsoon prevails (Dong et al., 2019; 
Huang et al., 2019). Since there is no standard method to identify long- 
range transboundary pollution in Taiwan, our method to classify event 
and non-event days is illustrated in Appendix II. In the modeling period, 
there were 14, 13, and 3 event days in January, April, and October, 
respectively, and no event days occurred in July. Fig. 4 presents the 
monthly MDA8 O3 average of event and non-event days based on ML- 
MMF estimations. In January, transboundary plumes mostly contained 
higher PM, NOx, and CO, so there is no significant O3 concentration 
difference between the event and non-event days. In April, the MDA8 O3 
averages of 13 event days show a significant impact on the whole island. 
Compared with event days, O3 exceedances on non-event days mostly 
occur in central mountainous areas, which may result from higher 
biogenic VOC emissions in spring (Chang et al., 2005). In July, higher O3 
level in northern Taiwan is due to the prevalence of southwest and south 
monsoon, and NOx, VOC, and formatted O3 transport from southern 
regions accumulated in northern regions. In October, both event days 
and non-event days show similar distribution, but event days present 
higher O3 concentration in western areas, especially in the NT region. 

3.3. RSM performance 

Because higher O3 concentrations are more sensitive to anthropo-
genic NOx and VOC emissions (Xing et al., 2011), we performed RSM for 
O3 exceedance days (MDA8 O3 > 60 ppb) for April, July, and October 
and excluded January due to no O3 exceedance days. RSM performances 
by using CMAQ, ML-MMF, and ML data for six air quality regions (NT, 
CM, CT, YCN, KP, and ET) of the event and non-event days in April, July, 
and October are illustrated in Table A5. Most of the RSM results meet the 
statistical requirement of mean NE < 3 % and max NE < 10 % consid-
ering r (0.855–1.000), mean NE (0.02 %–2.62 %), and max NE (0.08 %– 
9.88 %), except for the CM region’s October (max NE = 11.48 %) and 
the YCN region’s April (max NE = 11.38 %) and October (max NE =
12.04 %) of CMAQ data and KP’s April (r = 0.759) of ML-MMF data. 
Good RSM performance represents that RSM can reproduce CMAQ, ML- 
MMF, or ML outputs by only using county/city-level NOx and VOC 
emission ratios without extra CMAQ simulations or ML-MMF/ML 
modeling. The higher max NE may be due to unstable RSM perfor-
mance when NOx and VOC emission ratios are very low (0 %) or very 

Table 2 
Modeling performance of CMAQ, ML-MMF, and ML of benchmark case in 
selected months in 2016 based on monitoring stations (n = 73).  

Data source Index Month 

January April July October 

CMAQ r 0.41 0.53 0.79 0.80 
RMSE (ppb) 13.45 17.87 21.19 19.09 
MAE (ppb) 9.72 13.61 17.33 14.54  

ML-MMF Train r* 0.93 
(0.15) 

0.93 
(0.19) 

0.93 
(0.21) 

0.93 
(0.17) 

RMSE (ppb)* 4.54 
(0.36) 

6.83 
(0.63) 

5.94 
(0.63) 

7.43 
(0.74) 

MAE (ppb)* 3.36 
(0.26) 

5.14 
(0.49) 

4.26 
(0.34) 

5.34 
(0.38) 

Test r 0.93 0.93 0.93 0.94 
RMSE (ppb) 4.49 6.74 6.19 7.19 
MAE (ppb) 3.41 5.08 4.51 5.11  

ML Train r* 0.92 
(0.17) 

0.92 
(0.20) 

0.90 
(0.17) 

0.90 
(0.17) 

RMSE (ppb)* 4.66 
(0.44) 

7.18 
(0.64) 

7.04 
(0.35) 

8.94 
(0.59) 

MAE (ppb)* 3.49 
(0.27) 

5.35 
(0.42) 

5.14 
(0.33) 

6.58 
(0.47) 

Test r 0.93 0.92 0.89 0.90 
RMSE (ppb) 4.62 7.10 7.35 8.94 
MAE (ppb) 3.49 5.41 5.41 6.40 

* The standard deviations of r, RMSE, and MAE for the trained models by 10-fold 
cross-validation are illustrated in the brackets. 
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high (200 %) (Luo et al., 2021). Although the limited performance could 
be improved by adding more simulations under these extreme emission 
ratios, these scenarios are still impractical and hardly verified by ob-
servations. For example, it is almost impossible to measure pollutant 
concentrations without any anthropogenic emissions in urban areas. 
Furthermore, the validation of the baseline emission ratio (emission 
ratio = 1, Fig. A3) compared with observations shows a satisfactory 
performance (Mean NE = 2–6 %). Second, the higher bias may imply the 
high impact of non-local emissions, which means air pollutants or their 
precursors from upwind countries or other air quality regions dominate 
downwind local air quality, so local emissions only have a limited 
impact on local air quality and hardly explain the temporal variation of 
observed concentrations. As previously mentioned, in April and 
October, long-range transboundary air pollution transported from 
mainland China and plumes from upwind regions frequently accumulate 
and deteriorate air quality in southern air quality regions. 

3.4. O3 sensitivity to local NOx and VOC emissions 

Monthly combined O3 isopleths of all air quality regions in April, 
July, and October for the event and non-event days by using CMAQ, ML- 
MMF, and ML data are presented in Fig. 5, and the O3 isopleths for the 
individual zone are shown in Figs. A4–A8. All isopleths for each air 
quality region show the averages of grid cells having MDA8 O3 con-
centrations higher than 60 ppb in the region, and the x-axis and y-axis 
represent the NOx and VOCs emission ratios for all sources in all cities 
and counties in the region. 

First, ML-MMF isopleth is considered as the better tool to explain O3 
nonlinear responses to anthropogenic NOx and VOC emissions due to its 
observation-based adjustment and CTM basis, and ML-MMF isopleths 
show that the improved effort by reducing local emissions should be less 
than what CMAQ model simulated. For example, the CMAQ isopleth in 
July ranges from 72 ppb to 90 ppb concerning different emission ratios, 
but the ML-MMF isopleth presents a narrower range, which is from 62 

Fig. 3. Observed MDA8 O3 (circles) and modeled estimations of (a) CMAQ, (b) ML-MMF, and (c) ML.  

Fig. 4. Monthly MDA8 O3 concentrations for event days (with long-range transboundary pollution) and non-event days in selected months by ML-MMF data. No 
event days occurred in July. 

C.-P. Kuo and J.S. Fu                                                                                                                                                                                                                          



Environment International 176 (2023) 107969

7

ppb to 68 ppb. The reduced range of isopleths emphasizes the impor-
tance of adjustment by observations, and CMAQ-based RSM results may 
bias the improved air quality by emission control strategies. 

Second, the ML-MMF O3 isopleths show changed O3 sensitivity after 
fusing with observations. For example, CMAQ isopleths in April with a 
combined regime of NOx-limited and VOC-limited trends (Fig. 5(a)) are 
corrected to VOC-limited in ML-MMF isopleths (Fig. 5(b)) for the event 
and non-event days. If further comparing CMAQ modeled NOx and 
VOCs with observations (Fig. A9), CMAQ modeled estimations in the 
benchmark case were found to overestimate NOx in the NT region and 
underestimate VOCs compared with observations for all regions, which 
means the real O3-NOx-VOC system should be more VOC-limited and 
NOx-rich. 

Third, ML O3 isopleths present diverse O3 ranges and distorted NOx 
and VOC regimes compared with ML-MMF O3 isopleths, which implies 
ML without the support from CMAQ output could provide biased air 
quality predictions concerning its different O3 response to emissions, 
although ML model performances well in the benchmark case. For 
example, for the non-event days of the NT region in April (Fig. A4), the 
ML isopleth identifies an obvious VOC-limited trend, but the ML-MMF 
isopleth shows a combined NOx-limited and VOC-limited trend. For 
the other months, the ML O3 isopleths also present a lower O3 

concentration level and narrower range, even though the trend may be 
similar to the ML-MMF O3 isopleths. 

The disparity between ML-MMF and ML O3 isopleths implies that 
previous air quality forecasting studies (Ausati and Amanollahi, 2016; 
Song et al., 2015; Zhou et al., 2019) without involving CTM results and 
only using historical observations or other auxiliary data to predict 
future air quality may be potentially biased, even though the ML models 
met statistical requirements. Because the ML model could deviate the 
pollutant’s responses to its precursor emissions from the real responses 
of air pollutant concentrations due to its lack of physical and chemical 
basis. One major explanation is the lower variable importance priority of 
emission variables in the ML model. The variable importance priority of 
emission variables is relatively lower than other variables like meteo-
rological variables (Fig. A11), so the model missed the link between O3 
responses with NOx and VOC emissions. The lower variable importance 
priority is because most emission inventories are constructed by top- 
down methodology with routine monthly and weekly variation, the 
regular temporal variation of emission data has limited capability to 
explain dramatically varied pollutants. On the contrary, CMAQ-modeled 
O3 has a higher importance priority in the ML-MMF model (Fig. A11), so 
its nonlinear information to NOx and VOC emissions still remains in ML- 
MMF outputs. Another potential reason is that the ML model only learns 

Fig. 5. Monthly combined O3 isopleths from all air quality regions (NT, CM, CT, YCN, KP, and ET) for the event and non-event days in selected months by using 
CMAQ, ML-MMF, and ML data. 
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grid-level information without considering the air pollutants trans-
ported and reacted between grids, so the ML predictions are unable to 
reflect the accumulated pollutants from the upwind grids or air quality 
regions, even adding zonal emissions as independent variables cannot 
improve the performance. Moreover, the limited sample size from ob-
servations could be not large enough for the ML model, because O3 
exceedance (>60 ppb) does not always occur around the monitoring 
stations within limited exceedance days (Fig. A10). Therefore, the ML 
model under certain seasons (e.g. non-event days in April) has limited 
data to construct a robust model. In summary, we suggest not using ML 
O3 isopleths for emission control strategies. 

Fourth, transboundary pollution from upwind may change O3 
sensitivity to local NOx and VOC emissions. In the NT region, which is 
the first region suffering from transboundary pollution from mainland 
China, the ML-MMF isopleths (Fig. A4) of non-event days in April 
remain a combined regime of NOx-limited and VOC-limited, but for 

event days in April, the isopleth changes to serious VOC-limited. 
Because the northeast monsoon carries high NOx concentrations from 
the upwind, the NT region turns to a NOx-rich atmosphere and local O3 
response becomes more sensitive to VOC emissions. Even though there is 
no local NOx emission (emission ratio = 0), transboundary NOx still can 
support local O3 formation. Moreover, if taking out boundary conditions 
and local meteorology during the fusion process (Fig. A12), boundary 
conditions and local meteorology play a significant role that changing 
O3 sensitivity, which also proves the significant impact of transboundary 
pollution. The changed O3 sensitivity affected by outside pollution from 
the upwind was also reported in California, where wildfires in the late 
summer would emit large amounts of VOCs that can be transported to 
urban areas and significantly change the urban O3 sensitivity (Wu et al., 
2022). 

Fig. 6. Monthly O3 isopleths for event and non-event days in selected months based on ML-MMF data.  

C.-P. Kuo and J.S. Fu                                                                                                                                                                                                                          



Environment International 176 (2023) 107969

9

3.5. Suggested emission control preference 

Monthly O3 isopleths for the event and non-event days based on ML- 
MMF data are shown in Fig. 6. The O3 isopleths in April show VOC- 
limited trends for both the event and non-event days for all western 
regions, but the range reveals a limited improved effort by reducing VOC 
emission, which is around 0.25–4.5 ppb. Transboundary NOx could also 
accumulate for days and affect O3 sensitivity to local emissions on non- 
event days. In July, controlling NOx emissions is a more effective way to 
lower O3 concentrations in the CM, CT, YCN, and ET regions, and the NT 
and KP regions present combined NOx-limited and VOC-limited re-
gimes. The more VOC-limited trend in the NT and KP regions may be due 
to more population and vehicle emissions in these regions. 

In October, O3 isopleths are similar between the event and non-event 
days, because transboundary pollution in October mostly carries PM and 
SO2, which are not related to the formation of O3. NT, CT, and YCN 
regions have a combined NOx-limited and VOC-limited trend, and the 
potential improvement can be significant (58–76 ppb) in the NT region. 
The more VOC-limited trend in the CM and KP regions could be due to 
the impact of local geography. Owing to the many plateaus and hills in 
the CM and KP regions, the wind would be slowed down by higher 
terrain roughness, causing the accumulation of pollutants like NOx from 
the upwind regions. In the ET region, the O3 isopleths suggest an obvious 
NOx-limited trend for all months. In summary, most of the regions are 
VOC-limited in April and October but NOx-limited in July. The sug-
gestion of controlling VOC emissions in fall and winter is also coherent 
with the other study in Taiwan (Chen et al., 2021). 

3.6. Limitations and future works 

This study still has some limitations. First, the ML-MMF model needs 
to rely on enough monitoring stations (sample size) and good-quality of 
emission inventory to build a robust model. Multiple monitoring stations 
can explain the variance of space-related variables like emissions, 
meteorology, and land uses between sites and provide enough statistical 
power, and the emission inventory should reflect the various emissions 
around the monitoring stations. In our case, the employed TEDS emis-
sion inventory is updated every three years with finer to 1 km spatial 
resolution, thus it can reflect emissions around stations within space and 
time. For those regions or countries without enough monitoring stations, 
using remote sensing data from satellites may be an alternative way to 
obtain observations, but satellite data could be still biased by cloud and 
vertical column densities (Wu et al., 2022). For regions or countries 
without proper emission inventory, using a global emission database 
like ECLIPSE (Stohl et al., 2015) could be a potential solution to provide 
emission data around stations, but the spatial distribution method from 
national emissions needs careful assessment. 

Second, the ML-MMF RSM results or O3 isopleths are hardly vali-
dated by observations. Even though the ML-MMF O3 isopleths with 
baseline emission ratio (emission ratio = 1) were validated by obser-
vations and have a satisfactory performance (Fig. A3, Mean NE = 2–6 
%), O3 responses under extreme emission scenarios are hardly validated 
by observations. Because there are no observations to validate the esti-
mations under extreme emission scenarios like zero (emission ratio = 0) 
or double (emission ratio = 2) anthropogenic emissions. Thus, the 
margins of O3 isopleths still remained potential uncertainty. Further 
study to assess the uncertainty of O3 isopleths should be investigated in 
the future. 

4. Conclusion 

ML models become mainstream in atmospheric science because of 
more available real-time monitoring data and measurements. But its 
black-box modeling process, failure to involve physical and chemical 
mechanisms, and weak cooperation with the existing numerical models 
lower its stringency and persuasion. Except for developing more 

sophisticated model designs to increase predicting accuracy, the inter-
pretability and explainability of predictions should be evaluated as well. 
In this study, the capability of the ML model to serve as a bias corrector 
(ML-MMF output) based on CMAQ modeled results and a forecaster (ML 
output) was examined and applied to predict O3 nonlinear responses to 
anthropogenic NOx and VOC emissions. Three types of data were 
examined for constructing O3 isopleths by RSM: CMAQ data, ML-MMF 
data (a bias corrector), and ML data (a forecaster). 

Compared with CMAQ predictions (r = 0.41–0.80), both ML-MMF (r 
= 0.93–0.94) and ML predictions (r = 0.89–0.94) showed significantly 
improved performance in the benchmark case. While ML-MMF isopleths 
exhibit O3 nonlinearity close to actual responses due to their numerical 
base and observation-based correction, ML isopleths present different O3 
ranges and distorted NOx and VOC-limited regimes compared with ML- 
MMF O3 isopleths even though the ML model meets the statistical 
requirement in the benchmark case. Without involving CMAQ results, 
the ML model presents biased predictions concerning its different O3 
responses to NOx and VOC emission ratios. It also implies that only using 
historical observations or other auxiliary data without support from 
CMAQ or other CTMs to forecast the air quality could mislead the future 
trend. Meanwhile, after being corrected by observations, ML-MMF data 
present changed O3 sensitivity compared with CMAQ data. The cor-
rected O3 isopleths emphasize the impact of transboundary pollution 
from mainland China on the local O3 sensitivity, which transboundary 
NOx in April would make all air quality regions in Taiwan more sensitive 
to local VOC emissions and limit the potential effort by reducing local 
VOC emissions. 

It is advisable for future ML applications in atmospheric science like 
forecasting or bias correction to provide interpretability and explain-
ability while requiring modeling performance. Failing to interpret the 
interaction between predicted air quality, emissions, and environmental 
factors may mislead controlled targets and air quality policies. Assess-
ment with interpretable physical and chemical mechanisms and con-
structing a statistically robust ML model should be equally important. 
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