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GRAPHIC ABSTRACT

* A novel integrated machine learning method to
analyze O; changes is proposed.

* Various factors affecting long-term changes of
O; in Shanghai are quantified.

* Meteorological, photochemical, and regional
background O; are well separated.
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ABSTRACT

Surface ozone (O3) is influenced by regional background and local photochemical formation under
favorable meteorological conditions. Understanding the contribution of these factors to changes in Os
is crucial to address the issue of O; pollution. In this study, we propose a novel integrated method that
combines random forest, principal component analysis, and Shapley additive explanations to
distinguish observed O; into meteorologically affected ozone (O3 ygr), chemically formed from local
emissions (Os ), and regional background ozone (O; rpg). Applied to three typical stations in
Shanghai during the warm season from 2013 to 2021, the results indicate that O3 g in Shanghai was
48.8 + 0.3 ppb, accounting for 79.6%—-89.4% at different sites, with an overall declining trend of 0.018
ppb/yr. Oz (¢ at urban and regional sites ranged from 5.9-9.0 ppb and 8.9-14.6 ppb, respectively,
which were significantly higher than the contributions of 2.5-7.4 ppb at an upwind background site.
Os vt can be categorized into those affecting O; photochemical generation and those changing Os
dispersion conditions, with absolute contributions to O; ranging from 13.4-19.0 ppb and 13.1-13.7
ppb, respectively. We found that the O5 rebound in 2017, compared to 2013, was primarily influenced
by unfavorable O; dispersion conditions and unbalanced emission reductions; while the O; decline in
2021, compared to 2017, was primarily influenced by overall favorable meteorological conditions and
further emissions reduction. These findings highlight the challenge of understanding O; change due to
meteorology and regional background, emphasizing the need for systematic interpretation of the
different components of Os.

© Higher Education Press 2023

1 Introduction
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Surface ozone (O,) exerts significant impacts on air
quality, climate, human health and ecosystems, displaying
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deleterious effects (Lelieveld et al., 2015). As a secondary
air pollutant, O, is formed via photochemical reactions
among precursors under the presence of sunlight. Hence,
meteorological variations play a vital role in the short-
and long-term changes in O; (Wang et al., 2017). A
quantitative analysis of the effects of meteorology and
emissions is necessary to comprehend the fundamental
relationship between O, and meteorology. Notably, when
the effects of meteorological fluctuations are removed,
variations in O, concentrations are governed by local
photochemical reactions and background O,. The former
from local emissions, whereas the latter is primarily
formed from out-of-region emissions. Therefore,
determining the influence of meteorology, emissions, and
their specific factors on O, is fundamental to comprehend
O, trends and evaluate the impact of emission control
strategies.

Various methods are employed to estimate the
contributions of meteorology and emissions to O,
including chemical transport models (CTMs), statistical
methods, and machine learning (ML). CTMs involve
manipulating emission inventories and meteorological
fields to characterize the impact of emissions and
meteorology on air quality, as demonstrated by previous
studies (Li et al., 2019; Xu et al., 2019; Liu and Wang,
2020a, 2020b; Dang et al., 2021). However, CTMs
methods have two main drawbacks. First, the
computational resource requirements of numerical
models, as well as the difficulty of ensuring the accuracy
of emission inventories and meteorological fields, can
pose challenges in terms of implementation and result in
significant uncertainties. Second, determining the
contribution of emissions and meteorology to O, requires
extensive simulation scenarios that model the differences
in O; concentrations resulting from interannual changes
in emission inventories and meteorological fields across
different years. This process can be arduous and time-
consuming. Furthermore, this approach only allows for
the overall contribution of meteorological conditions to
O;, hindering our understanding of the impact of
individual meteorological factors on O,. In contrast,
statistical methods establish relationships between
meteorological or emission data and air quality
observations using multiple linear regression, empirical
orthogonal functions, or Kolmogorov—Zurbenko (KZ)
filtering (Camalier et al., 2007; Henneman et al., 2015;
Yang et al., 2019; Li et al., 2020; Gao et al., 2021; Hu
et al., 2021). These methods usually aim to fit or strip
single influencing factors using mathematical equations.
However, due to the nonlinearity between O, and its
precursors, accurately capturing these mnonlinear
relationships can be difficult using statistics. Recently, the
rapid rise of big data technology has led to the
widespread application of ML methods for separating the
effects of meteorology and emissions on air quality
(Grange et al., 2018; Grange and Carslaw, 2019; Vu
et al., 2019; Qu et al., 2020; Wang et al., 2020; Zhang

et al., 2020; Dai et al., 2021; Lovri¢ et al., 2021; Shi et al.,
2021; Gonzalez-Pardo et al., 2022; Hou et al., 2022; Tang
et al.,, 2022; Wu et al., 2022; Zhou et al., 2022; Ding
et al., 2023). For example, Grange et al. (2018) employed
a random forest model to examine the trend of emissions
on PM,, in Switzerland from 1997 to 2016. Vu et al.
(2019) evaluated the impact of a 5-year clean air action
plan using the meteorological standardization technique.
Qu et al. (2020) assessed the effectiveness of clean air
policies on PM, s reduction in China’s “2+26” region
using reinforcement tree models to remove
meteorological effects. These ML methods have been
demonstrated to effectively separate the effects of
weather and emissions on air quality.

However, most of the existing research focuses on the
overall impact of emissions or meteorology on O, with
less emphasis on systematically quantifying the impact of
specific factors of emissions, meteorology, and back-
ground on O;. Recently, Lundberg et al. (2020) proposed
a SHapley Additive exPlanation (SHAP) approach based
on game-theoretic approach to explain ML models, which
overcomes the black-box nature of ML methods and
makes it easier to understand the attribution process of
ML. The SHAP approach assigns predictions to each
feature value, providing a clearer understanding of the
degree of influence on the research target and quantifying
the influence of each meteorological factor on Oj;. In
addition to meteorological factors, it is also important to
differentiate O, to local formation and regional back-
ground considering local and regional scale pollution
control. Based on the characteristics of regional
background O,, the dimensionality reduction property of
principal component analysis (PCA) method can
effectively isolate the regional background O; from the
observed data (Suciu et al., 2017).

Here, we proposed a novel integrated method (IM) to
quantify  meteorological, emissions, and regional
background contributions to changes of O, by integrating
random forest (RF), PCA and SHAP. We applied the
method to investigate changes of O, in Shanghai during
the warm season (April-September) from year 2013 to
2021. During this period, we effectively stripped off the
meteorological and chemical contribution to O, assigned
the meteorological contribution to each meteorological
factor, and decomposed the chemically generated O, into
local emission and regional background. Eventually, we
systematically quantified the influence of each specific
factor on O;. Our results demonstrate the reliability and
provide strong scientific support for O; control.

2 Methodology
2.1 Data

For this study, three air quality monitoring stations
located in Shanghai, China were selected. These stations
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have continuous hourly observational data but diverse
features. Pudong Huinan (PDHN, 31°3'N, 121°47'E), is
an up-wind background site located in the eastern area of
Shanghai and adjacent to the ocean, mainly influenced by
regional transport. Putuo (PT, 31°14'N, 121°24'E) is an
urban-center site strongly influenced by urban anthro-
pogenic emissions such as vehicle exhaust, industries, and
residential emissions, etc. Dianshan Lake (DSL, 31°5'N,
120°58'E) is a regional site located at the joint region of
Jiangsu, Zhejiang provinces and Shanghai where O,
accumulation occurs frequently. The reasons for selecting
these three sites from multiple observational sites are
detailed in Text S1, Figs. S1 and S2. Hourly observa-
tional data of air pollutants (NO, and O;) from 2013 to
2021 were collected from these three sites. Oy
concentration was monitored by an O, analyzer (Model
491, Thermo Scientific, USA), and NO, concentration
was monitored by an NO, analyzer (Model 42i, Thermo
Scientific, USA). Outlier removal and data interpolation
padding were performed on these data without changing
the original data sample to meet the requirements of
machine learning model training (Text S2).

Hourly reanalysis meteorological data for the years
2013-2021 were downloaded from the European Centre
for Medium-Range Weather Forecasts (ECMWF). These
data include 10 m u-component of wind (U10), 10 m
v-component of wind (V10), 2 m dewpoint temperature
(DT), 2 m air temperature (T), surface pressure (SP),
surface net solar radiation (SSR), and total precipitation
(TP) from ERAS-land with a spatial resolution of 0.1° x
0.1°. In addition, boundary layer height (BLH) and total
cloud cover (TCC) from ERAS were downloaded with a
spatial resolution of 0.25° x 0.25°. To match the weather
around the three sites above, all these meteorological
variables were extracted from the grids covering these
three stations in the gridded ERAS/ERAS-land data set. A
comprehensive comparison between the ERAS/ERAS-
land reanalysis data with surface observations (using
temperature, dew point temperature, wind speed and,
wind direction, at Pudong Airport and Hongqgiao Airport)
to verify the data reliability is presented and documented
in detail in Text S3, Figs. S3 and S4.

The 72 h backward air mass trajectories arriving at an
altitude of 100 m above ground level (a.g.l.) at PT, DSL
and PDHN were calculated using the Hybrid Single
Particle Lagrangian Integrated Trajectory (HYSPLIT
5.0.0) model (Stein et al., 2015). The HYSPLIT was
driven by reanalysis meteorological data from the
National Centers for Environmental Prediction (NCEP)
and the National Center for Atmospheric Research
(NCAR). We conducted trajectory clustering on the
results generated by HYSPLIT, as depicted in Fig S5.

2.2 Trend analysis

The Mann-Kendall (MK) trend analysis is a useful tool

for detecting monotonic trends in time series data, which
is widely employed in atmospheric sciences research
(Hirsch et al., 1982; Pathakoti et al., 2021; Zhang et al.,
2022). Compared to ordinary least squares (OLS), it is
particularly appropriate when the data distribution is
ambiguous or when the sample size is small. This is
because the MK trend analysis does not make the
assumption that error terms in the regression model are
identically and independently distributed, which can lead
to biased results. As a result, the MK trend analysis
provides a more robust and reliable method for trend
analysis in these scenarios. In this study, we employed a
seasonal MK test method to determine the trend of O,
while mitigating the influence of seasonal changes. A
detailed explanation of the method can be found in the
study of Hirsch et al. (1982). When the trend is
statistically significant (p < 0.05), a positive S-value
indicates that the ozone is increasing (decreasing), and the
magnitude of |S| is used to indicate the rate of increase
(decrease) in the trend.

Furthermore, we also utilized the Theil-Sen estimator to
examine the rate of O increase/decrease. This method
was proposed by Sen as a robust nonparametric statistical
method for trend calculation (Sen, 1968). The method is
impervious to measurement errors and outlier data, and it
is suitable for long-term trend analysis. A detailed
description of this method can be found in Zhang et al.
(2022).

2.3 Random Forest (RF)-Based meteorological
normalization

The RF model is a widely used ML model known for its
high accuracy and stability. In this study, we employed
RF to predict O, using time and meteorological variables.
Specifically, the time variables, including Unix time, day
of year, day of week, and hour, where used to represent
the long-term, annual, weekly, and daily patterns of
pollutant emissions, respectively. The meteorological
variables used in the RF model included wind speed (WS,
calculated from U10 and V10), wind direction (WD,
calculated from U10 and V10), T, relative humidity (RH,
calculated from T and DT, Alduchov and Eskridge,
1996), SSR, SP, TP, BLH, TCC, length of each air mass
trajectory (Length) and cluster of each air mass trajectory
(Cluster), to comprehensively consider the impact of
meteorology on O;. The RF model was implemented in a
Python environment, and underwent hyper-parameter
selection to obtain the optimal model performance. The
details of specific steps are described in Text S4, Figs. S6,
and S7. The resulting RF model achieved an R? value
ranging between 0.83 and 0.85, which is acceptable
compared to previous studies (Vu et al., 2019; Huang
et al., 2022; Li et al., 2022; Lu et al., 2022), and the other
model performance characteristics are presented in Table
S1.
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The meteorological normalization method used in this
study is similar to those utilized in previous studies
(Grange et al., 2018; Wang et al., 2020; Zhang et al.,
2020; Shi et al., 2021). This method predicts O, trends
under historical average meteorological conditions.
Specifically, we predict ozone by randomly sampling
meteorological parameters from the historical meteoro-
logical data set without changing Unix time (the long-
term pattern of pollutant emissions) to create a new data
set for O, prediction. By making 1000 predictions in this
manner, the predicted 1000 O, time series are averaged,
resulting in a weather-normalized O, variation driven
only by emissions, i.e., the changes in O, concentrations
independent of meteorological effects.

2.4 Principal component analysis (PCA)-based regional
background O estimation

PCA is a widely utilized method for dimensionality
reduction in atmospheric environmental studies (Wren
et al., 2020; Yang et al., 2020; Austin et al., 2021). Its
principle lies in reducing high-dimensional data to a
lower-dimensional space while retaining maximum
information. This procedure facilitates the extraction of
the main feature components of data, and it enables
obtaining principal components that have the most
significant impact on the data, thus enabling further data
analysis and other subsequent operations (Joliffe and
Morgan, 1992; Zhu et al., 2021).

In this study, PCA was run and two components with
eigenvalues greater than 1 were retained. Based on the
relationship between component loadings and variables,
we identified them as regional background ozone and
others. PCA transforms data linearly, therefore, it is
possible to calculate O; ppg from the linear relationship
in PCA. We referred to previous studies’ calculation of
background concentration (Langford et al., 2009; Berlin
et al., 2013; Suciu et al., 2017; Wang et al., 2022a) and
input daytime (10:00-17:00) data, including O,, NO,,
WS, WD and T, into the PCA model, to determine the
corresponding components of O; pp according to the
scoring coefficient matrix. The detailed calculation steps
are presented in Text S5. Using the results of PCA, we
calculated the background concentration of O; by
utilizing the average and standard deviation of O,
observations, the score, and the variance contributions of
corresponding components (see Tables S2 and S3).

2.5 SHAP approach-based causal attribution

An explanatory model based on cooperative game theory,
namely the SHAP approach (Lundberg and Lee, 2017;
Song et al., 2022), is employed to attribute contributions
from specific meteorological parameters to O;. This
approach performs an algorithm on the ML model and the
input features, resulting SHAP values that quantify the

impacts of each feature on the individual prediction
results. The prediction results of the ML algorithm are the
sum of the attributed values of each input feature (SHAP
value). Therefore, using a ML model for predicting ozone
(e.g., the RF model) enables calculation of the
contribution of the input data (e.g., RH at 10:00 on July 1,
2013) to the predicted O;. The core algorithm is as
follows (Egs. (1) and (2)):

M
F) = Do)+ ) Bi(f), (M)
i=1
where f is the original model, ¢, (f) is the baseline value
of the model, which is the average of the model
prediction results, and M is the number of model features.
¢:(f,x) is the SHAP value of feature i, and it is the
contribution of feature i to the prediction result f(x).
When ¢,(f,x) > 0 (¢:(f,x) < 0), it indicates that feature i
will increase (decrease) f(x), and the absolute value of
¢:(f, x) represents the importance of the feature i.
1
D(f,x)= > —[f.(PRUi)-f.(PY)], 2
(f.%) R%;M[f(’ LDl @
where R is the set of all feature orderings, and P is the
set of all features that come before feature i in ordering R.

The SHAP value of each meteorological factor,
including T, RH, SSR, WS, WD, BLH, TCC, SP, TP,
Cluster, and Length, was determined based on the trained
RF model and the SHAP method. The contribution of
each meteorological component to O; was further
analyzed.

2.6 Integrated method

We propose an integrated method for identifying the
contributions of meteorological, chemical / emissions and
regional background factors to changes in O;, which
includes three main steps. The overall framework of this
IM is presented in Fig. 1.

Step 1 (meteorology affected O;). In this step, the
meteorological normalization model is utilized to
generate the time series of O, after meteorological
normalization (denoted as “O; cypy)- Then, the
meteorologically normalized O, is subtracted from the
observed O, to obtain the meteorological contribution to
O, (denoted as “O; ypr”). Next, the meteorological
factors and the previously obtained meteorological
contribution are used as the independent and dependent
variables, respectively, in an RF model for training.
Finally, utilizing the SHAP method, the SHAP values of
each meteorological factor are calculated based on the
trained RF model and the meteorological factors as input
data. This step yields both the total meteorological
contribution and the contribution of specific meteoro-
logical parameters.

Step 2 (regional background O;). The typical PCA
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Fig.1 Framework of the Integrated Method.

approach for determining Oj is influenced by meteoro-
logy. To eliminate the meteorological influence and
obtain the final meteorologically unaffected regional
background O, (denoted as “O; ppg”), we first compute
the regional background O, using the PCA model and
then remove the meteorological impact using the
meteorological normalization model from Step 1.

Step 3 (local formation O,). Surface O, consists of the
meteorological contribution, regional background O, and
O, generated from local emissions via photochemical
reactions. In this step, we subtract the meteorological
contribution (“Oj; ") and regional background ozone
(“O5 rpg”) from the observed ozone to obtain the ozone
generated from local emissions (denoted as “O,_; .~

It should be noted that the relationship between O, and
its precursors is nonlinear and separating local,
meteorological, and regional background factors from the
perspective of precursor emissions would be complicated.
However, our approach bypasses the complexity of the
nonlinear relationship between O, and its precursors by
separating directly from the observed O,, making the
problem easier to resolve. Ultimately, this integrated
method provides a systematic and quantitative separation
of the observed O, and clarifies the specific effects of
meteorological factors, regional background, and local
emissions on O;.

3 Results and discussion

3.1 Trend of O, pollution

The long-term trends of O, and nitrogen dioxide (NO,) at
each site in Shanghai are presented in Fig. 2. The
concentration of NO, displayed a distinct pattern, with
concentrations in descending order at PT, DSL, and

PDHN. From trend analysis, both PT and DSL showed a
decreasing trend in NO,, while PDHN did not show a
clear trend. The decrease in NO, at PT and DSL can be
attributed to the implementation of NO, emission control
strategies in Shanghai and the Yangtze River Delta
(YRD) region, respectively; while the low NO,
concentration at PDHN, which is located near the ocean
and has a sparse population, may be due to the
background. Although significant differences in NO,
concentrations were observed among the three stations, it
was difficult to observe a clear trend in O, concentrations
over the long-term. Analyzing the diurnal variations of O,
at each site can provide a more reflective assessment of
the O; formation regime at the three stations. PT
exhibited low daytime O, concentration, significant
diurnal variation, and sustained high NO, concentration,
indicating strong local generation of O, and influence by
NO titration. DSL had the highest O; concentration
during the day among the three sites, but NO, was not
prominent, and the diurnal variation of both NO, and
ozone was not significant, indicating that local
photochemistry had a small contribution to ozone for-
mation, and NO, is relatively less limiting to O,. The
daytime NO, concentration at PDHN was much lower
than the other two sites, the O; concentration was
comparable to that at PT, indicating that the regional
transport had a more significant impact on O; around
PDHN.

O, is primarily dominated by meteorology and
photochemistry, therefore, meteorological conditions are
crucial for O, formation. We selected meteorological
conditions for the warm season from April to September
at 10—17 for analysis, as shown in Figs. 3 and 4. From the
wind rose diagram, although the dominant wind during
the warm season of PT, DSL and PDHN is south-east
(SE), the wind aggregation and wind speed gradually
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decrease from ocean to inland (Fig. 3). Therefore, PDHN
is more susceptible to one-way wind, while the wind
direction at DSL is more scattered. RH, T and SSR are
considered the most important meteorological conditions
that determine the O, photochemical processes. The
analysis shows that RH at PDHN is significantly higher
than the other two sites; T is significantly lower than the
other two sites; and SSR is between PT and DSL, which
may be related to the proximity of the PDHN site to the
ocean. For the two inland sites, PT and DSL, the
differences in RH and T are small, but DSL’s SSR is
significantly higher than PT. Regarding other parameters,
PDHN’s TP and TCC are significantly smaller than PT
and DSL, and the difference in SP among the three sites
is small. The BLH of DSL, PT, and PDHN decreases in
turn. Overall, the dominant wind direction of PT is south-
cast, solar radiation is relatively small, and other
meteorological conditions are mainly between the two
stations. The wind direction of the DSL station is
relatively scattered, with low RH, high T and high SSR,
indicating that it is more favorable for ozone generation.
The meteorological parameters at PDHN are significantly
influenced by the ocean, leading to distinct variations in

comparison to the other two stations. This influence is
evident in the concentrated wind direction, high RH, and
low temperature at PDHN. These factors contribute to the
station’s unique atmospheric conditions, setting it apart
from the others.

3.2 Meteorological impact

The meteorological contributions to O, at various sites
between 2013 and 2021 have been determined through
the integrated method, as presented in Fig. 5, Text S6 and
Figs. S8-S15. Meteorological conditions were found to
have a positive impact on O, formation in 2013
(0.78-3.55 ppb) and 2017 (3.95-9.13 ppb), but
unfavorable for O, formation in 2015 (—2.13 to —0.85
ppb), 2016 (—3.81 to —0.15 ppb) and 2021(—8.86 to —4.41
ppb) at PT, DSL and PDHN stations, as depicted in Fig.
5. The remaining years displayed distinct features at each
site. Although O; \zr displayed similar trends at the
three locations in certain years, it varied significantly
across most years due to their geographical locations, as
illustrated in Fig. 5(a). Generally, the weather system
affects O, in two ways: by altering T, RH, SSR, TCC and
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cumulative absolute contributions to ozone ranged from
13.44-19.03 ppb and 13.18-13.66 ppb, respectively, as
detailed in Table S4.
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The overall trend of meteorological impact on Oj is
primarily through influencing OPG. For example, all PT,
DSL and PDHN sites indicated favorable meteorological
influences on O, photochemical formation in 2013 and
2017, as opposed to the unfavorable impact in 2021. Both
RH and T contributed significantly to meteorological
ozone, as illustrated in Figs. 5(b)—(d). In comparison, RH
and T had a greater impact on O; levels at PT and DSL
stations compared to PDHN stations. This discrepancy is
likely due to the location of the PDHN station near the
ocean, where RH and T are relatively stable, and
anthropogenic activity levels are lower. In contrast, the
higher levels of anthropogenic activities around PT and
DSL stations, combined with their inland location, made
them more susceptible to changes in RH and T that could
affect the rate of ozone generation from NO, and volatile
organic compounds (VOCs) emissions. Overall, our
findings suggest that the impact of RH and T on O; levels
is more significant at stations with high levels of
anthropogenic activities, particularly in inland areas.
Furthermore, this method effectively reflects the O,
formation characteristics at different stations.

The impact of ODC at PT, DSL and PDHN varied
significantly due to the different geographical locations of
the stations. At the PT station, the cumulative absolute
contribution of WD, Length, WS, and Cluster could reach
11.60 ppb (Table S4), signifying a clear influence of
horizontal transport on O,. The concentration of O, at PT
was affected by the arrival of inland air mass, clean air

mass from the ocean, and changes in wind direction (Fig.
S13). At the DSL site, WS had an average absolute
contribution of 4.85 ppb, which was significantly higher
than the PT and PDHN stations (3.10 ppb and 0.69 ppb,
respectively). The reason for this was that the DSL site
was located at the conjunction area of the YRD region,
where O, and its precursors from the three regions tended
to converge around the site. As a result, the dilution effect
and the diffusion effect of wind speed caused significant
changes in O, (Fig. S13). The cumulative average
absolute contribution of all meteorological parameters
characterizing O, transport at the PDHN site was 12.51
ppb, with BLH accounting for 43.0%. This indicated that
the effects of transport, especially vertical transport, had a
significant impact on the local variability of O, at PDHN.
As an up-wind background station, it has little
anthropogenic emissions, resulting less in situ chemical
reactions producing O;. However, the low concentration
of NO, made it difficult to titrate off the O, transported
from outside the station. Figure S14 showed a clear
difference between the dependence plot of BLH at PDHN
and other stations. The SHAP value of BLH at PDHN
station decreased with the increase of T. This was
probably because the increase of T strengthened the
convective intensity within the troposphere, causing the
BLH to increase and further strengthening the O,
diffusion ability at PDHN station. This was consistent
with the study of Tang et al. (2021) and a more detailed
explanation could be found in Text S6.
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The results indicated that factors such as RH, T, and
SSR, which affect OPG, determined the trend of the
O; yep> Whereas the influence of ODC on O fully
reflected the respective characteristics of PT, DSL, and
PDHN sites. The meteorological impacts analyzed in this
study were comparable to those reported by Lin et al.
(2021). Meanwhile, Liu and Wang (2020a) revealed that
weather conditions reduced ozone generation during
20142016, which was consistent with the meteorological
findings at PT and DSL sites. Furthermore, Li et al.
(2021b) investigated the daytime O, pollution process in
Shanghai and found that the contribution of downward O,
transport in the lower free troposphere at offshore sites
could reach 49.1%. This indicated that BLH had a
significant influence on ozone in PDHN, which was
consistent with the results obtained in this study.

3.3 Regional background contribution

The concentration of O;_5; Was estimated to be 48.8 =
0.3 ppb, with a declining trend of —0.018 ppb/yr (p =
0.02), as presented in Fig. 6. This trend could be attri-
buted to the stringent pollution control measures
implemented in China between 2013 and 2020, which

primarily targeted the reduction of NO, and VOCs, the
precursors of O;. The reduction rate of NO, was higher
than that of VOCs, which could be disadvantageous for
O, mitigation in urban areas but beneficial in rural and
regional areas (Li et al., 2019). Thus, the minor decline in
O;_gpg could be explained by the decrease in O, in rural
regions and the complexity of the regional background O,
components. The proportion of O; pp; in O, varied
among the PT, DSL, and PDHN sites, with values of
86.4% (84.0% to 90.5%), 79.6% (76.7% to 85.4%), and
89.4% (86.6% to 96.0%), respectively. The contribution
of O; zpg at PT station increased and then decreased,
indicating a change in the local O; concentration in the
opposite direction. The O; s at DSL was lower than
that at PT station, which could be attributed to favorable
photochemical conditions at the DSL station. The
contribution of O; p; at PDHN station had the highest
percentage among the three stations, which was
reasonable considering its regional location.

Our findings are overall consistent with previous
studies. For example, Sahu et al. (2021) used the
CMAQvV5.2 model and found that the policy relevant
background concentration of O, in the Eastern China
region accounted for 79% of the total O;, primarily
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originating from South-east Asia and regions outside of
Asia. Lu et al. (2019) conducted a study using the GEOS-
Chem model and found that the average background
concentration of O; for March to October in the YRD
region was about 41 ppb, with biogenic volatile organic
compounds (BVOCs) being the primary contributors
from natural sources. Ni et al. (2018) used the GEOS-
Chem model to investigate the contribution of domestic
and foreign O, to China during the spring season and
found that the background concentration of O, in the
Shanghai region was approximately 40—45 ppb. However,
it is worth noting that the regional background O,
obtained from the aforementioned model studies was
derived by simulating the shutdown of anthropogenic
emissions solely within China. This approach failed to
account for the contribution of O; pollution transport
from other regions to Eastern China and the YRD region.
As a result, our findings indicate a higher regional
background concentration than those reported in these
studies. In addition to modeling approaches, some
statistical methods have also been used to calculate the
regional background concentration of O;. Chen et al.
(2022) established a relationship between surface O, and
temperature and obtained a regional background
concentration of O, in the YRD from 2013 to 2019 of 53
+ 13 ppb. Suciu et al. (2017) used the same PCA method
as our study to analyze the Houston-Galveston-Brazoria
(TX) region for regional background O; resulting in a
value of 46.72 + 2.08 ppb. Similarly, Wang et al. (2022b)
used a similar PCA method to calculate regional
background O; concentrations of 51.0-52.1 ppb in
Shandong, China. Overall, our results regarding the
regional background O, in Shanghai are reasonable.

3.4 Local emission contribution

Figure 7 illustrates the variation of O, | ~ at PT, DSL, and
PDHN. O,_, . shows significant differences among these
stations. Specifically, DSL has the highest local chemical
contribution, ranging from 8.9—14.6 ppb (15.4%—-23.0%),
followed by PT and PDHN stations with concentrations
of 59-9.0 ppb (10.7%-15.6%) and 2.5-7.4 ppb
(4.6%—13.2%), respectively. Interestingly, O, ;. began
to increase at the urban PT site at a rate of 0.6 ppb/yr
since 2013, reaching 9.2 ppb in 2018. In contrast, NO,
decreased overall at a rate of 0.91 ppb/yr at PT during
2013-2018 (see Fig. S16). O; | then decreased at a rate
of 0.8 ppb/yr to 6.5 ppb during 2018-2021, while NO,
continued to decrease at a rate of about 0.47 ppb/yr. This
pattern of an increase followed by a decline in O, |,
while NO, levels are generally decreasing, may reveal the
changes of photochemical regime related to O,
sensitivity. It is worth mentioning that China
implemented the Air Pollution Prevention and Control
Action Plan (APPCAP) during 2013-2017, which mainly
targeted primary pollutants including NO, and SO,.
Subsequently during 2018-2021, China implemented the
Blue Sky Protection Campaign (BSPC), which continued
the previous measures and strengthened VOCs control.
O, around the urban PT area continued to increase
between 2013 and 2018, possibly related to Shanghai
being under the VOC-limited regime. However, the
decrease in O, after 2018 may be due to the continuous
reduction of NO, making Shanghai shift from VOC-
limited regime to a transition regime or NO, -limited
regime. Similar findings were also reported by previous
studies (Xu et al., 2019; Mousavinezhad et al., 2021;
Wang et al., 2022b). Notably, reducing VOCs mitigates
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O,, irrespective of the O, formation regime. Regarding
DSL, O; | similarly rises and subsequently falls, but the
rising trend is not monotonic compared to that at PT.
During this period, NO, decreased with a fluctuating
speed of approximately 0.16 ppb/yr at DSL, which was
much lower than the decrease rate observed at the urban
station PT. This difference may be due to DSL being
located at the border between Shanghai and other cities,
which is influenced by the pollution reduction measures
of both Shanghai and the YRD region. Hence, it is
inconsistent with urban Shanghai. As for PDHN, O;_; ~
exhibits a fluctuating trend ranging between 5.5-6.9 ppb,
dropping to only 2.5 ppb in 2021 due to a large decline in
NO, (Fig. S16). Looking at the period from 2013 to 2021,
NO, decreased overall at a rate of 0.38 ppb/yr at PDHN,
which is also lower than the decline rate observed at the
urban site PT. This phenomenon may be attributed to
PDHN’s location in an area of Shanghai with relatively
low human activity, as illustrated by the significantly
lower local NO, concentrations compared to the other
two stations (Fig. S16), and this could be the reason for
PDHN’s continuing stability of O.

3.5 Investigation into O, changes in typical years

We quantified the numerous contributing elements of the
observed O, after unifying the data based on the
integrated method, shown in Fig. 8. Based on the findings
of the integrated method, we selected the years 2013,
2017, and 2021 as representative years to investigate
changes in ozone-influencing variables at three
representative locations in Shanghai.

During the implementation of the APPCAP policy
between 2013 and 2017, the concentrations of daytime O,
at the PT, DSL, and PDHN stations exhibited a rebound
of 11.3 ppb (20.3%), 5.8 ppb (9.5%), and 2.2 ppb (3.6%),
respectively, in 2017 compared to 2013. This trend
suggests that the O, rebound was more significant in
urban areas than in regional or upwind areas. The changes

in Oy | and O; pzr Were the primary causes of the
observed O, rebound, as shown in Fig. 9. Apart from a
slight decrease in O, |~ at PDHN, there was a substantial
rebound in O; | . of approximately 3.1 ppb and 5.1 ppb at
PT and DSL, respectively, accounting for 27.4% and
87.9% of the total O; rebound. This finding clearly
indicates that the air pollution control measures
implemented under the APPCAP policy were unfavorable
for O, mitigation in urban areas. Actually, since ozone
formation around PT and DSL usually falls into the
VOC-limited regime (Li et al., 2021a), the emission
reduction measures caused a quick drop in ambient NO,
(see Fig. S16), leading to a weakened titration effect and
hence the rebound of local ozone. Moreover, under high
VOCs conditions, carbonyl compounds produced by
VOCs oxidation, especially formaldehyde, can accelerate
O, production and VOCs oxidation (Li et al., 2021a). In
addition, the decrease in PM, 5 slows down the uptake of
aerosol particles on hydroperoxyl radicals, thereby
accelerating O, generation (Li et al., 2019). These factors
may have contributed to the increase in O; levels.
However, at the PDHN station, which is an upwind
background station limited by NO,, the reduction in NO,
was beneficial for O, mitigation, explaining the drop in
O; e

For O; \pr, all the three stations exhibited rebound
during the APPCAP period, although the magnitude of
the rebound differed among the three sites due to the
differences in location. Notably, the increase in
meteorological O, at all three sites was attributed to
meteorological factors characterizing ODC, such as WS,
Length, WD, Cluster, BLH and SP. We compare the
variations in these factors between 2013 and 2017 (Tables
S5-S7, Figs. S17 and S18) and found that the air mass
trajectories from the ocean or primarily passing through
the ocean (e.g., C7 and C11 at PT, C8 and C11 at DSL,
C3 and C11 at PDHN) decreased significantly in 2017
compared to 2013, whereas air masses from inland,
particularly south and west of Shanghai (e.g., C5 at PT,
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Fig. 9 Variation of influencing factors on O; for typical years at PT (a), DSL (b) and PDHN (c).

C4 at DSL, C8 and C10 at PDHN), increased.
Meanwhile, the length of most trajectories decreased
significantly in 2017 (Tables S5-S7). The south-west
direction of Shanghai is the hinterland of the Yangtze
River Delta with a high level of anthropogenic activities.
The increase in the number of trajectories from the south-
west indicates a possible increase in local Oy transport to
Shanghai, while the decrease in the number of air masses
passing oceans indicates a decrease in the mitigation
effect of clean air masses on O, pollution. In addition, the
length of air mass trajectories reflects the transport rate of
air masses (Hou et al., 2022), and the decrease in the
length of air mass trajectories indicates a slowdown in the
transport rate of air masses. This may lead to more O,
being transported to Shanghai from surrounding areas.

When the wind rose diagram and wind speed were
analyzed (Figs. S17 and S18), the wind direction and
wind speed in 2017 exhibited significant differences
compared to those in 2013. From the bivariate polar plot
(Fig. 3), it can be seen that O, pollution is heavier when
south-west winds dominate and the lowest O,
concentration occurs when north-east winds occur.
According to the comparison of the wind rose diagram,
the number of north-easterly winds was significantly
reduced in 2017 compared to 2013, and the wind speed
decreased at all three stations. The comparison results
indicate that in 2017, compared to 2013, the frequency of
north-east winds that can alleviate O pollution decreased,
and wind speed significantly decreased, leading to overall
favorable conditions for ozone accumulation in the 2017
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wind field. These results indicate that the unfavorable
ODC was the primary cause of the unfavorable Oy \er in
2017 compared to 2013. In fact, according to Liu and
Wang (2020a), the increase in O; in 2017 was caused by
a change in wind field, which is consistent with our
findings.

After the implementation of the BSPC during
2018-2020, there was a significant reduction in daytime
O; at PT, DSL, and PDHN by 20.7 ppb (30.8%), 10.2 ppb
(15.2%), and 15.8 ppb (25.6%), respectively, compared to
2017 (Fig. 9). Although the effects of this policy on
O; rpg Were moderate, there was a decrease in Oy | at
PT (2.6 ppb), DSL (1.8 ppb), and PDHN (3.6 ppb),
accounting for 12.6%, 17.6%, and 22.8% of the overall
decline, respectively. This suggests a shift in the O,
formation regime (Xu et al., 2019). Furthermore, O3 ygr
decreased by 18 ppb, 8.4 ppb, and 12.2 ppb at PT, DSL,
and PDHN, respectively, accounting for 87%, 82.4%, and
77.2% of the overall decline (Fig. 9). Therefore, it can be
concluded that the significant reduction in O, in 2021 was
mainly driven by favorable weather conditions for O,
mitigation, but emission reduction also played an
important role in controlling the O, situation, particularly
at the regional level. Further investigation into the
contribution of meteorological factors revealed that all
types of meteorological factors favored O, mitigation,
including decreasing SSR, decreasing T, increasing TP,
increasing RH, and WS (Fig. S18). Based on the
comparison of meteorological parameters, the overall
decrease in O; y;zr may have originated from a decrease
in solar radiation or an increase in precipitation.

The implementation of the APPCAP and the BSPC has
resulted in a significant reduction of O,, particularly those
that are photochemically formed. Furthermore, it may
have led to a shift in the O; formation regime in
Shanghai. Therefore, if these precursor emission reduc-
tion policies are continued, they could eventually
alleviate the O, pollution problem. Weather also plays a
significant role in O, pollution during these periods. For
example, unfavorable ODC in 2017 led to an increased
O, pollution condition, while a decrease in solar radiation
or an increase in precipitation in 2021 amplified the effect
of pollution control efforts. During both periods of
emission reduction policies, the reduction of O; ppg is
sustained because rural and suburban areas are generally
in the NO,-limited regime, and NO, reduction can lead to
a reduction in suburban O;, resulting in regional O,
mitigation (Li et al., 2021a). The persistent decrease in
O; rpg indicates that regional O, precursor emission
controls have some effect on O, reduction. However,
based on the changes in O; |, it is clear that stringent
emission reduction of regional pollutants combined with
precise characterization of O, formation regime is more
effective for O, reduction.

Our results were compared with previous studies. For
example, Wang et al. (2019) found that anthropogenic

emissions contributed positively to O, during the
summers of 2014 and 2015 in Shanghai, compared to
2013, while meteorology and natural sources had
negative contributions. Similarly, Yin et al. (2021) used
eXtreme Gradient Boosting (XGBoost) model and
GEOS-Chem and found that, compared to the summer of
2019, emissions caused a decrease in O, while
meteorology caused an increase in O in Shanghai during
the summer of 2020, which is similar to the results of our
study. Li et al. (2020) found that meteorological factors
caused an increase in Oy at a rate of 0.2 ppb/yr and
emissions caused an increase in O at a rate of 1.5 ppb/yr
for the YRD region between 2013 and 2017 using
multilinear regression (MLR) model method and GEOS-
Chem, which is similar to the results of the regional
station DSL. Chen et al. (2020) used MLR model and
found that, in the YRD region, emissions caused O; to
rise by 11.2 pg/m3 in 2018 compared to 2014, which is
comparable to the DSL station. Meanwhile, meteorology
caused O, to rise by 1.3 pg/m?, which is lower than the
results from the DSL station. In addition, the
meteorological impact, regional background O,, and local
formed O, were also compared with previous research in
previous sections. These comparative results can well
support the reliability of our research results.

4 Conclusions

The formation of O, is influenced by a combination of
factors including meteorology, background, and local
emissions, while its relationship with precursors is
nonlinear. Therefore, isolating the effects of these
influential factors is crucial for assessing the O, pollution
issue. In this study, we proposed an integrated method
that combines RF-based meteorological normalization
technology, PCA-based regional background O,
estimation, and SHAP-based causal attribution to separate
observed O, into meteorological, local formed, and
regional background contributions. Our investigation of
daytime O, during the warm season between 2013 and
2021 in Shanghai revealed that meteorological factors
that directly affects OPG include temperature, humidity,
and solar radiation, etc., which play a significant role in
O, variations, with a cumulative absolute contribution of
13.44-19.03 ppb, and their effects on O; have generally
comparable yearly patterns. The overall effect of the
ODC on Oy is 13.18-13.66 ppb, with individual charac-
teristics among different sites. The regional background
O, is 48.8 £ 0.3 ppb, accounting for 79.6%—-89.4% of the
observed O; at different sites and shows an overall
declining trend of 0.018 ppb/yr. Local formed O; in urban
and regional sites increased and then decreased with a
concentration range between 5.9-9.0 ppb and 8.9-14.6
ppb, respectively, while local formed O, in the upwind
background site showed fluctuating wvariations with
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concentrations ranging between 2.5-7.4 ppb. The O,
rebound in 2017 compared to 2013 was primarily
influenced by the unfavorable ODC and unbalanced
emission reductions. In contrast, the O, decline in 2021
compared to 2017 was primarily influenced by overall
unfavorable meteorological conditions for O, formation
and further emissions reduction.

In summary, our method effectively captures the
characteristics of O, variability and quantifies the effects
of various factors on O, concentration. It should be noted
that the intrinsic links between meteorological and
chemical processes have been shown to accelerate
chemical reaction rates and influence the abundance of
VOCs in the troposphere, ultimately impacting surface O,
concentrations. However, our research employs an
integrated machine learning method to analyze the
relationship between observed ozone and variables such
as meteorology and emissions, prior to assigning the
observed ozone to each influencing factor. This approach
avoids potential impacts that may arise from the ozone
formation process and enables the systematic quantifica-
tion the impact of each factor, yielding relatively accurate
results. These findings provide a more comprehensive
and systematic understanding of the contribution of each
factor to O, formation and identify which factors have a
greater impact on O, concentrations. This information can
aid in the development of more targeted and scientifically
sound prevention and control strategies for local O,
formation mechanisms, as well as proposing emergency
plan based on weather forecasts. Although our method
was applied to only three sites in Shanghai, these sites
exhibited different geographically induced pollution
characteristics, and the long-term time series provided
good coverage of all types of O; pollution patterns.
Therefore, the methods outlined in this work can be
extended to other regions.
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