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GRAPHICAL ABSTRACT

PUBLIC SUMMARY
■   A deep learning model (DeepSAT4D) is developed to retrieve 4D chemical concentrations from satellite.

■   The DeepSAT4D can regenerate dynamic evolution of vertical structure of atmospheric chemicals.

■   The DeepSAT4D was applied to retrieve 2017-2021 4D NO2 concentrations and NOx emissions in China.
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Accurate measurement  of  atmospheric  chemicals  is  essential  for  under-
standing their impact on human health, climate, and ecosystems. Satellites
provide a  unique  advantage  by  capturing  data  across  the  entire  atmo-
sphere, but  their  measurements  often lack  vertical  details.  Here,  we intro-
duce  DeepSAT4D,  an  innovative  method  that  efficiently  reconstructs  4D
chemical concentrations from satellite data.  It  achieves this by regenerat-
ing the dynamic evolution of vertical structure, intricately linked to complex
atmospheric processes such as plume rise and transport,  using advanced
deep learning techniques. Its application with the Ozone Monitoring Instru-
ment - Nitrogen Dioxide, a commonly used satellite product, demonstrates
good agreement with ground-based monitoring sites in China from 2017 to
2021.  Additionally,  DeepSAT4D successfully  captures emission reductions
during 2020-pandemic shutdown. These findings emphasize DeepSAT4D’s
potential  to  enhance  our  understanding  of  the  complete  atmospheric
chemical composition and to provide improved assessments of its impact
on human health and Earth’s ecosystem in the future.
 

INTRODUCTION
Accurate  knowledge  of  atmospheric  chemicals  across  both  space  and

time is  crucial  for  a  deeper  understanding of  their  effects  on human health,
the  environment,  climate,  and  ecosystems.1-3 Given  the  limited  scope  of
ground-based  measurements,  satellites  emerge  as  the  exclusive  means  to
continuously  collect  direct  measurements  of  atmospheric  chemicals  with
global  spatial  coverage.  Noteworthy  satellites  such  as  the  Global  Ozone
Monitoring Experiment (GOME),4 Scanning Imaging Absorption Spectrometer
for  Atmospheric  Cartography  (SCIAMACHY),5 and Ozone  Monitoring  Instru-
ment  (OMI)6 are  deployed  for  measuring  atmospheric  gaseous  species.
These  instruments  mainly  provide  the  total  column  density  aggregated
across all vertical layers and are limited to a single measurement per day at
certain satellite pass times. Although, some satellite instruments have limb-
viewing as the Microwave Limb Sounder (MLS)7 which could provide vertical
information,  their  capabilities are mostly limited to measuring species in the
upper troposphere and the lower stratosphere with relative lower spatial and
temporal  resolution.  This  limitation  significantly  constrains  our  ability  to
comprehensively  assess  atmospheric  chemical  composition,  especially
across various vertical and temporal dimensions.

Previous studies have endeavored to improve the accuracy of ground-level
concentration  estimations,  recognizing  the  significance  of  ground-level
concentrations  in  relation  to  human  exposure.8-9 Nevertheless,  persistent
challenges remain in the accurate estimation of ground concentrations from
satellite  retrievals.  These  challenges  stem  from  difficulties  in  assigning
column density to vertical layer-specific concentrations, whether through the
application  of  statistic  regressions,10-11 machine  learning  techniques12-20 or
numerical  model  simulations.21-23 The  primary  obstacle  lies  in  the  lack  of
accurate  representation  of  vertical  profiles,  which  exhibit  strong  spatial  and
temporal variations.24 For instance, chemicals emitted from sources disperse
into  upper  atmospheric  layers,  creating  significant  variations  in  vertical
profiles  in  downwind  areas.25 Since  most  surface  monitoring  observations,
often used as ground truth data,  are situated in urban areas (such as China
National  Environmental  Monitoring Center  noted as CNEMC),26 lacking infor-

mation  about  rural  regions.  Consequently,  many  existing  machine-learning
models  that  heavily  rely  on  ground-based  observations  may  incorrectly
assume vertical  profiles  in  downwind  areas,  potentially  leading  to  overesti-
mations in rural  locations.  Numerical  models are capable of explicitly  repre-
senting the intricate processes of plume rise and dispersion from the emis-
sion  sources  following  physical  laws.27 Some  studies  have  introduced  a
column-to-surface  ratio  informed  by  numerical  chemical  transport  models
(CTM) to estimate satellite measurements at ground level,21-23 or employ the
simulated  results  of  CTMs  as  a  feature  in  their  machine  learning  models.14

However, this CTM simulation varies both in time and space and is subject to
uncertainties  stemming  from  various  inputs  and  parameterization.28-29Addi-
tionally, the substantial  computational demands of CTMs limit their applica-
tion in near real-time scenarios. Effectively leveraging the strengths of CTMs
in  satellite  retrievals  and  accurately  interpolating  satellite-derived  column
data into vertically resolved concentrations is an ongoing challenge.30

In principle, the satellite-measured column density represents a condensed
value,  derived  from  contributions  at  each  vertical  layer.  Deciphering  this
column value into layer-specific concentrations is challenging,  as it  is an ill-
posed  problem  when  relying  solely  on  detailed  information  about  vertical
structure. Previous studies  attempted to  address  this  challenge by  incorpo-
rating  multiple  local  features  (target  itself)  into  this  decoding  process.
However, few of them have effectively leveraged information from surround-
ing grid cells and time steps (neighborhood data), likely because it can be too
complex  to  integrate  such  neighborhood  information.  Machine  learning,
particularly deep-learning structures based on convolutional neural networks
(CNNs),  presents a  promising solution,13 as it  can readily  incorporate neigh-
borhood data into the prediction process. Our previous studies have demon-
strated its capacity in revealing the complicated atmospheric processes.31-34

To illustrate this approach, we present a novel method called DeepSAT4D,
which using Deep-learning method to retrieve Satellite column measurement
into  Four-Dimensional  chemical  concentrations.  More  specifically,
DeepSAT4D utilizes deep-learning models to regenerate the dynamic evolu-
tion  of  vertical  structure  stemming  from  complex  atmospheric  processes
including  plume  rise  and  flow  transport,  thus  to  establish  spatial-temporal
correlations  for  both  column  and  vertical  layer-specific  concentrations.  We
enriched the training data with multiple CTM model simulation under various
of  conditions  to  better  represent  the  spatial  and  diurnal  meteorological
patterns,  as well  as the spatial  distribution of column density.  To customize
the model  for  our  specific  task,  we  meticulously  designed  the  model  struc-
ture and framework, leveraging domain knowledge, as illustrated in Table S1.

The DeepSAT4D framework comprises three key modules:
ResNet:  This  module  is  used  for  vertical  decomposition,  transforming

column  density  into  a  detailed  vertical  concentration  structure.  The  ResNet
model’s  architecture  allows  it  to  extract  information  from  neighboring  grid
cells,35 particularly  for  atmospheric  system,33 aiding  in  the  determination  of
specific  vertical  structures  influenced  by  complex  atmospheric  processes.
The loss  function  is  also  carefully  designed  to  enforce  the  mass  conserva-
tion constraint by incorporating the predicted column density from the verti-
cal-specific concentration.

ConvLSTM: Serving as the decoder for the Variational Autoencoder (VAE)36

for  temporal  interpolation.  This  module  structure37 offers  real-time predic-
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tions  of  time-series  concentration  in  response  to  updated  emissions.  In
adherence to physical laws, we feed the initial condition into the model twice
to account  for  its  role  in  atmospheric  physical  and chemical  processes and
its  function  as  a  modulatable  baseline  to  facilitate  the  training  process.
Furthermore,  we’ve  designed  a  dual-model  that  incorporates  both  forward
and  backward  models  concurrently,  considering  satellite  measurements  at
24-hour  intervals,  to  constrain  the  concentration  and  mitigate  the  issue  of
error accumulation.

UNet-LSTM:  As  the  encoder  for  the  VAE  model,32 this  module  estimates
emission adjustments to align with the observed concentration.  To mitigate
potential  ill-posed  problems,  we  normalize  emissions  variability  to  a  daily
average  level.  Additionally,  we  train  the  model  directly  with  the  CTM  data,
eliminating  the  need  for  a  priori  emissions  from  bottom-up  investigations,
which are often impeded by data delays.

In this study, we employ the OMI satellite to retrieve nitrogen dioxide (NO2)
in  China  as  an  example,  but  it’s  worth  noting  that  DeepSAT4D  can  be
extended  to  other  species  and  other  regions  with  a  similar  model  structure
and corresponding training dataset. We initially trained using simulation data
from  the  atmospheric  chemistry  transport  numerical  model  (a  commonly
used  physical  model,  WRF/CMAQ38-39)  conducted  over  China  domain  with
27km  by  27km  spatial  resolution  (Figure  S1).  The  trained  models  are  then
applied to OMI satellite products for the years 2017-2021. Ground measure-
ment data (CNEMC) from the same period is used for comparison and evalu-
ation  of  the  surface  concentration  estimated  from  column  density  using
DeepSAT4D.  Further  details  about  the  machine  learning  modules  and  the
numerical model used in this study can be found in the Method section.

As  machine-learning  based  model,  the  DeepSAT4D  model  offers  the
advantage  of  real-time  conversion  from  satellite  column  density  to  four-
dimensional chemical concentration, eliminating the need for additional CTM
model  simulations.  This  approach  significantly  reduces  the  computational
burden, essentially providing a CTM-free method. As illustrated in this study,
we exclusively utilized simulation data for the baseline year of 2017 (simula-
tion with  2017  baseline  emissions  and  meteorology),  along  with  two  emis-
sion change scenarios and two future climate change scenarios in 2050 for

training purposes (refer to Table S2). Subsequently, we applied this model to
the years 2018-2021 without the need for any CTM simulations, as presented
in the following Results section. 

MATERIALS AND METHODS 

Numerical model WRF/CMAQ
In  this  study,  we employed the  Community  Multiscale  Air  Quality  (CMAQ)

model,  version  5.2,  utilizing  the  Carbon  Bond  6  mechanism  for  gas-phase
chemistry  and  the  AERO6  mechanism  for  particulate  matter  chemistry.
CMAQ, as one of the most widely used Chemical Transport Models (CTMs),
has  a  well-established  reputation  for  accurately  simulating  air  pollutant
concentrations.38 Meteorological  data  were  generated  using  the  Weather
Research and Forecasting (WRF)  model,39 version 3.8,  configured identically
to our previous studies.58-59 Emission data were sourced from the ABaCAS-EI
inventory, a high-resolution dataset developed by Tsinghua University with a
spatial  resolution  as  fine  as  1km-by-1km  and  a  temporal  resolution  of  1
hour.60 Biogenic emissions were estimated using the Model for Emissions of
Gases  and  Aerosols  from  Nature  (MEGAN).49 It  is  noteworthy  that  we  have
assessed  the  performance  of  WRF  and  CMAQ  in  simulating  meteorological
variables  and  air  pollutant  concentrations  through  extensive  comparisons
with observational data in our previous studies.58-59

The horizonal domain covers most of East Asia and is represented by grids
of 182 rows and 232 columns with a horizontal resolution of 27 km by 27 km.
The whole troposphere (from ground to 100mb) is defined by using 14 layers
with sigma values as follows: 1.00, 0.995, 0.99, 0.98, 0.96, 0.94, 0.91, 0.86, 0.8,
0.74, 0.65, 0.55, 0.4, 0.2, and 0.00, corresponding to 19, 57, 114, 230, 386, 584,
910, 1375, 1908, 2618, 3598, 5061, 7620, 11944 meters above the ground at
domain and annual averaged level.

In  addition to national  averages,  our  analysis  also focuses on eight  cities,
namely  Beijing,  Shanghai,  Guangzhou,  Wuhan,  Chengdu,  Harbin,  Lhasa,  and
Urumqi,  as  well  as  eight  regions:  North  China  Plain,  Yangtze  River  Delta,
Chuan-Yu,  Liang-Hu,  South  China,  Northeast  China,  Fen-Wei,  and  West
China.  The  geographical  distribution  of  the  simulation  domain,  cities,  and
regions is provided in Figure S1.
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Figure 1.  Comparison of NO2 column density (CMAQ simulation, unit: 1×10 molec/cm2) and surface NO2 concentration (both simulated in CMAQ, and reproduced by Deep-
SAT4D, unit: ppb) across simulation domain (at 14:00 local time in 2017 baseline case) and in eight cities (selected the grid with highest surface concentration as the peak
grid cell, and calculated the average concentrations in surrounding grid cells away from it by the distance up to 10 grid cells).
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We  conducted  five  simulation  scenarios  using  the  WRF/CMAQ  models
over  a  year  (as  summarized  in Table  S2).  These  scenarios  including  three
meteorological conditions for the years of 2017, 2050-BCC-ssp126, and 2050-
BCC-ssp585. Within each of these conditions, we considered different emis-
sion variations, including the 2017 baseline emissions, two random emission
increases based on 2017 data,  and emission levels  corresponding to  2050-
BCC-ssp126 and 2050-BCC-ssp585, as described in our previous paper.61
 

ResNet structure and training (from column density decompose to verti-
cal layers)

The ResNet35 model  is  trained to  establish a  connection between column
density and vertical layer-specific concentrations under varying meteorologi-
cal  conditions,  serving as an additional  feature.  The structure of  the ResNet
model is depicted in Figure S9.

Similar  as  our  previous  study,33 we  designed  the  ResNet  model  with  128
channels in the initial  layer and incorporated 8 residue blocks.  In addition to
the  column  density  at  14:00  local  time,  matching  the  OMI  pass  time,  we
included  meteorological  factors  such  as  surface  layer  U- and  V-direction
winds  (UV-wind),  planetary  boundary  layer  (PBL)  height,  10-meter  wind
speed (WS),  short-wave radiation (SWR), convective velocity scale (WSTAR),
2-meter temperature  (T2),  humidity  (Q2),  and  Leaf  Area  Index  (LAI)  corre-
sponding  to  the  respective  hour.  To  represent  geographical  information,  we
utilized a time-independent terrain height variable normalized to have a mean
of  0  and a  variance  of  1.  The  prediction  target  includes  NO2 concentrations
across all vertical layers. It’s worth noting that further refinement of the verti-
cal  layer  structure is  possible,  but  it  would result  in  a  significant  increase in
computational  resources,  particularly  in  terms  of  the  RAM  required  to  store
the training data.

For  data  augmentation,  we  introduced  random  cropping  of  the  feature
maps with dimensions of 60 rows by 60 columns. During training, we utilized
the  Mean  Squared  Error  (MSE)  loss  function,  running  for  a  total  of  2000
epochs.  This  number  of  epochs  proved  to  be  adequate  for  achieving  good

performance  in  both  training  and  testing.  Our  learning  rate  commenced  at
0.001 and was linearly decayed to zero at the end of the training process. We
employed the Adam optimizer62 to enhance model convergence.

The  loss  function  consisted  of  two  components:  First,  the  loss  of  NO2

concentration at each vertical layer was weighted by predefined ratios based
on the average concentration level at each layer. This weighting was used to
account  for  the  larger  scales  of  smaller  concentrations  at  upper  layers,
making  them  comparable  with  surface  layer  concentrations.  Second,  the
predicted concentration was used to estimate the column density, which was
added as an additional component of the loss. This was done to optimize the
model and ensure mass conservation across all vertical layers. It’s important
to note  that  this  design also  allows for  retraining if  column density  calcula-
tions  based  on  the  satellite  average-kernel63 are  considered,  though  it  was
not implemented in this study, as our OMI product lacked this information.

To provide better constraints on vertical  properties,  we included meteoro-
logical variables and column data for the current date as well as the previous
and  following  dates.  This  allowed  us  to  incorporate  surrounding  time-step
information into the training process.

The training procedure involved ResNet (also applied to ConvLSTM) using
data from the first 15 days of each month, totaling 720 days of records. Test-
ing was conducted on the remaining days in each month across four differ-
ent  scenarios.  Due to computational  resource limitations,  we adopted a 50-
50  split  between  training  and  testing.  It’s  important  to  highlight  that  we
trained the model for all  24 hours to gain the benefits from the variability of
features in the training data,  even though the OMI data was applied specifi-
cally around local time 14:00. The model performance in training and test is
very closed (RMSE<0.1 ppb, |NMB|<0.2, R2=1), as presented in Figure S10. 

ConvLSTM  structure  and  training  (from  daily-averaged  emission  to
concentration)

The  ConvLSTM37 model  serves  to  estimate  the  concentration’s  temporal
evolution by leveraging time-series meteorological factors, incorporating two
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concentrations  with  24-hour  step  intervals.  This  data  is  interpolated  into
hourly values,  providing  a  detailed  temporal  profile  of  concentration  varia-
tions.  The  structural  layout  of  the  ConvLSTM  model  can  be  referenced  in
Figure S11.

We  use  time-series  meteorological  features  to  interpolate  concentrations
at specific hours into 24-hour variations. These features include the same set
of  meteorological  factors  observed  over  a  24-hour  period,  as  well  as  time-
independent normalized terrain height. Additionally, daily NOx emission data,
utilized in CMAQ simulations, is integrated into the model. Notably, we refrain
from using hourly NOx emission data to prevent ill-posed problems in subse-
quent  tasks  (i.e.,  avoid  the  possibility  that  multiple  combinations  of  hourly
NOx emissions can match to concentration estimates with satellite measure-
ments at the satellite pass time). Instead, we opt to adjust emissions solely at
the daily average level, effectively making simultaneous adjustments to emis-
sions for each hour across a day.

Given that the measurement intervals occur every 24 hours, there are two
temporal  directions  in  which  we  predict  time-series  concentration.  The  first
direction is  forward,  meaning  we  initiate  the  prediction  at  Hour  0  and  fore-
cast the subsequent hours (1, 2, ..., 24). While this approach is consistent with
the time sequence in CMAQ, it’s susceptible to error accumulation, especially
as the prediction moves further away from the initialization. However, as the
prediction hour approaches Hour 24, it draws nearer to the next initialization
time, where constraints should be imposed.

To address this issue and make more accurate predictions, we have imple-
mented an  additional  backward  model.  This  model  initiates  the  concentra-
tion  at  Hour  24  and  proceeds  to  back-predict  the  reversed  time-series
concentrations  for  hours  23,  22,  and  so  on  until  Hour  0.  This  dual-model
design  offers  improved  predictions  for  hours  closer  to  Hour  24  but  distant
from  Hour  0.  By  using  both  forward  and  backward  models  concurrently  to

constrain  the  concentration,  we  minimize  the  error  accumulation  problem.
These models are trained together, with the loss function incorporating both
models’ outputs and comparing them with the CMAQ-simulated hourly NO2

concentration as the ground truth.
The  final  prediction  is  the  average  of  both  models’ predictions. In  accor-

dance  with  physical  laws,  the  concentration  previously  predicted  serves  as
the initial condition for predicting the next hour’s concentration. This previous-
hour  concentration  plays  a  dual  role  in  the  model:  firstly,  it  participates  in
atmospheric  physical  and  chemical  processes  and  is  combined  with  other
factors such as meteorological variables within the ConvLSTM cell. Secondly,
it  acts  as  a  baseline  that  can  be  modulated  by  perturbations.  After  passing
through the ConvLSTM cell, the perturbation, resulting from the atmospheric
processes,  is  added  to  the  previous  concentration  status,  creating  the  new
concentration  status.  This  design  greatly  facilitates  the  model’s  training
process,  as  the  prediction  for  the  next  hour’s  status  closely  resembles  the
previous hour’s status.

The  ConvLSTM  model  comprises  four  layers  with  varying  channel
numbers:  256,  128,  64,  and  64,  each  equipped  with  a  3×3  kernel  size.  The
hyperparameters  (h,  c)  are  automatically  updated  during  the  prediction,
preserving  historical  information  for  long-term forecasting.  The  convolu-
tional features facilitate the incorporation of neighboring grid information into
the  LSTM  hyperparameters,  recognizing  the  significant  role  of  surrounding
areas in atmospheric processes, in addition to local features.

Our model is trained to predict all 14 layers of NO2 concentrations simulta-
neously,  accounting  for  interactions  among  them  (e.g.,  vertical  diffusion).
Similar to the ResNet, we trained the ConvLSTM using data from the first 15
days of each month, accumulating to a total of 720 days of records. Testing
was  performed on  the  remaining  days  of  each  month,  across  four  different
scenarios.  The  training  initiates  from the  previous  day’s  local  time at  14:00,
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Figure 3.  Comparison of 14:00 local time surface NO2 and 24-hour averaged NO2 across simulation domain and 24-hour diurnal variation in eight cities (simulated by CMAQ
and reproduced by DeepSAT4D, annual mean in 2017 baseline case, unit: ppb).
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with a 24-hour time interval.  The model’s performance in testing achieves a
score of RMSE<2.3 ppb, |NMB|<0.2, R2=1, as depicted in Figure S12. 

UNet-LSTM structure and training (from 2-hour concentrations to daily-
averaged emission)

We employed the Variational Auto-Encoder (VAE) approach35 to interpolate
two specific hour concentrations measured by satellites into a complete 24-
hour time series. Following the framework of our previous model,31,34 the UNet-
LSTM, we input all time-series features, including meteorological factors, into
the  LSTM  layer  to  extract  temporal  features.  These  temporal  features  are
then  combined  with  time-independent  features,  such  as  terrain  height,  and
the two-hour  concentrations observed by satellites (at  hour  0  and hour  24).
This  information is  used to  predict  the 24-hour  average emissions between
these two time points. The model’s structure can be found in Figure S13.

The model  is  trained as a generative machine-learning model,  with emis-
sions serving as the patent layer due to their substantial uncertainties, espe-
cially when compared to other factors and the absence of ground-truth data.
In  contrast  to  our  previous  study,32 where  we directly  trained the  VAE using
satellite  data,  this study follows a different approach.  We initially  trained the
VAE  using  CMAQ  simulations  and  subsequently  applied  the  trained  VAE
model  with  satellite  products.  This  approach  offers  several  advantages.
Firstly, it  enables us to leverage multiple CMAQ scenarios,  combining differ-
ent  emission  levels  and  meteorological  conditions,  as  opposed  to  relying
solely  on  the  baseline  data  provided  by  satellites.  Secondly,  when  applying
the  VAE with  satellite  data  in  subsequent  years,  it  eliminates  the  need for  a
priori  emissions,  as  all  relevant  conditions  have  been  accounted  for  during
the  training  process.  The  challenge  of  updating  a  priori  emissions  from
bottom-up investigations is often hindered by data delays, leading to the use
of  outdated  priori  emission  estimates  that  do  not  reflect  current  conditions.

However, by training the VAE with CMAQ data, we can work with reliable prior
data  for  emissions,  covering a  relatively  wide range of  variations.  While  it  is
acknowledged  that  uncertainties  from  the  CMAQ  model,  including  chemical
and  physical  mechanisms,  may  also  affect  the  VAE,  we  have  carefully
designed the loss function to minimize the impact of these uncertainties, as
follows.

The  loss  function  is  similar  as  our  previous  designed,32 consisted  two
parts. First is the adjustment of emission. Since in the decoder we only allow
the change for the daily averaged emission level, it will have certain biases in
prediction the time-series. Such loss can be helpful to minimize the discrep-
ancy, to make better prediction of the emission adjustment matching with the
two-time specific  concentration.  Consequently,  the  first  part  of  the  loss can
be regarded  as  representing  uncertainties  in  emissions.  The  updated  emis-
sions are integrated into the previously trained decoder, which encompasses
the two-directional  ConvLSTM models,  to  predict  the hourly  concentrations.
The difference between these model-predicted concentrations and the CMAQ-
simulated time-series concentrations serves as the other  component  of  the
loss  function  during  training.  While  our  objective  is  not  to  achieve  a  perfect
match between the predicted concentration and the ground truth concentra-
tion, the second part of the loss function reflects uncertainties in input data,
such as meteorology and satellite measurement, as well as errors in models.
The balance between these two components of the loss is achieved through
optimization  during  training,  addressing  all  the  uncertainties  in  emissions,
potential  errors  associated  with  the  CMAQ  model,  machine  learning-model,
and inputs, including OMI and meteorological variables.

Following the training process, the model’s predictions for the 24-hour time-
series  concentrations,  when  supplied  with  satellite-retrieved  two-hour
concentrations,  are  considered  as  the  spatially  interpolated  concentrations.
The emission will be also predicted from the two-hour satellite measurement.
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Figure 4.  Trend of OMI-predict surface NO2 concentration with DeepSAT4D during 2017-2021 comparing with ground observation in eight cities with the spatial distribution
of 1km-to-27km emission ratio (ER) (left), and the comparison between OMI-prediction and observations by different group of ER values (right) (ER<1 indicate the sum of
the emission in 27km grid cell are zero according to the 1km gridded emission file).

ARTICLE

6  　　　The Innovation Geoscience 2(1): 100061, March 19, 2024 www.the-innovation.org/geoscience

https://www.the-innovation.org/geoscience
https://www.the-innovation.org/geoscience
https://www.the-innovation.org/geoscience


We conducted comprehensive evaluations of  the trained model  to  ensure
that it maintains acceptable statistics (RMSE<1.3 mole/s, R2>0.8, |NMB|<0.3),
as depicted in Figure S14. Once the VAE is well-trained, it becomes a versa-
tile  tool  that  can  be  readily  applied  to  other  years  without  the  need  for  any
complex  CTM  simulations  or  priori  emission  estimations,  rendering  the
DeepSAT4D model entirely CTM-free and highly efficient. 

RESULTS 

DeepSAT4D  performance  in  retrieving  vertically  revolved  NO2 from
column density

As  described  previously,  DeepSAT4D  can  effectively  utilize  information
from  neighboring  grid  cells  and  temporal  data  to  accurately  reproduce  the
vertical  structure  of  each  grid  cell,  enabling  the  decoding  of  aggregated
column data into concentrations at different vertical layers. This capability is
particularly  valuable  when  it  comes  to  ground-level  NO2,  which  is  closely
related to human exposure and emission sources.

We first  use  CMAQ simulation  data  to  validate  the  performance of  Deep-
SAT4D  in  retrieving  surface  NO2 from  the  CMAQ  column  density.  Results
suggest that DeepSAT4D excels in reflecting the spatial gradients of ground-
level NO2 concentrations (the lowest layer in CMAQ, approximately 19 meters
above the ground) as presented in Figure 1.

Ground-level  NO2 concentrations  (annual  mean at  14:00  local  time)  often
exhibit more pronounced gradients than their column densities, as indicated
by  the  more  significant  decline  in  ground-level  NO2 concentration  from  the
peak grid cell to the surrounding grid cells when compared to column density.
This  is  particularly  evident  in  megacities  like  Beijing,  Shanghai,  and
Guangzhou, where emission sources are prevalent. This discrepancy occurs
because  NO2 is  transported  aloft  more  than  through  the  surface,  and  aloft

concentrations  also  contribute  to  the  NO2 column.  The  discrepancy  is  less
pronounced in Chengdu, likely attributable to low dispersion to the surround-
ing area facilitated by its location in a basin.40 The gradients in ground-level
NO2 concentrations and column densities in  Wuhan exhibit  nearly  no differ-
ence.  This  is  mainly  attributed  to  the  significant  emissions  released  at  high
altitudes  from  point  sources  with  elevated  stacks,  a  characteristic  more
pronounced in Wuhan compared to other cities (see Figure S2). The notice-
able  distinction  between  the  two  is  anticipated  to  become  evident  when
efforts  to  control  aloft  emissions  are  implemented  in  the  future  (see
Figure  S3).  Evidently,  DeepSAT4D  adeptly  captures  the  spatial  gradient
discrepancy between surface NO2 and column density. It accurately predicts
a  more  substantial  reduction  in  surface  NO2 compared  to  the  reduction  in
NO2 column  as  one  moves  away  from  the  peak  NO2 grid  cells,  though  its
performance  in  Lhasa,  a  relatively  clean  area,  is  limited,  likely  due  to  the
restricted  variation  of  emissions  in  remote  areas  within  the  current  training
dataset.  DeepSAT4D  accomplishes  this  by  leveraging  information  from
neighboring grid cells and time steps, enabling precise predictions of surface
NO2 concentration gradients that may not necessarily align with column data.
As expected (refer to Figure S4), at the grid cell with the highest ground-level
NO2 concentration,  typically  situated closer to emission sources,  the vertical
profiles  indicate  a  higher  concentration  near  the  surface.  In  contrast,  the
surrounding  areas  exhibit  a  more  significant  presence  of  NO2 aloft  due  to
dispersion  and  transport  processes.  DeepSAT4D  adeptly  captures  this
pattern, utilizing the spatial distribution of column density in conjunction with
the corresponding meteorological conditions.

The  NO2 vertical  profiles,  as  revealed  by  multiple  years  of  OMI  satellite
retrievals with DeepSAT4D (see Figure 2), exhibit pronounced spatial-tempo-
ral  variations.  In  general,  during  winter,  NO2 displays  the  smallest  vertical
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Figure 5.  Estimated NOx emission variations by month, cites, and regions across 2017-2021 (unit: mol/s per 27km-by-27km grid cell).
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gradients compared to other seasons. This phenomenon can be attributed to
weaker  sink  processes,  including  low  dispersion  and  limited  photochemical
reactions which resulted in longer lifetime of NO2, allowing it to disperse and
remain  present  across  vertical  layers  for  extended  periods.  In  contrast,  the
summer  season  exhibits  the  opposite  trend.  Strong  vertical  mixing  and
increased  solar  radiation  lead  to  a  shorter  lifetime  of  NO2,  resulting  in  both
lower  surface  and column densities,  as  well  as  the  most  significant  vertical
gradients observed throughout the year.

On a horizontal scale, NO2 vertical profiles generally exhibit the most signif-
icant  gradients  in  polluted  cities  with  better  dispersion  conditions,  such  as
Shanghai and Guangzhou, situated in coastal areas. In comparison to inland
cities like Beijing, Wuhan, and Chengdu, coastal cities benefit from meteoro-
logical conditions that facilitate the transport of pollution to their surrounding
regions.  Inland cities  tend to  have more localized pollution aloft,  resulting in
reduced vertical gradients for NO2. Cities in remote areas, such as Lhasa and
Urumqi,  exhibit  the  smallest  vertical  gradients  due  to  their  lower  emissions,
primarily  representing  rural  areas  in  the  analysis.  These  results  align  with
observed  NO2 vertical  profiles  in  general,  indicating  relatively  larger  vertical
gradients in urban and industrial areas41 compared to rural or remote areas.42

Moreover,  the  gradients  are  more  pronounced  in  the  morning  compared  to
noon and afternoon time periods (see Table S3).43 In essence, the NO2 verti-
cal  profiles  obtained  through  DeepSAT4D  align  with  a  reasonable  spatial-
temporal pattern  that  is  consistent  with  physical  laws  and  actual  environ-
mental conditions. 

DeepSAT4D  performance  in  interpolating  24-hour  NO2 from  OMI  pass
time

By incorporating additional features such as emission and meteorological
factors that influence the diurnal variation of NO2 concentrations, DeepSAT4D
can effectively  interpolate  and provide  a  comprehensive  24-hour  estimation
of  NO2 concentrations  starting  from  the  original  OMI  pass  time  (at  around
13:30  local  time,  we  choose  the  14:00  model  data  to  align  with  it,  as  the
CMAQ is conducted on an hourly basis) per day. This interpolation enhances
the  temporal  resolution  of  NO2 data,  allowing  for  a  more  complete  and
detailed representation of NO2 concentration throughout the day.

By comparison against the CMAQ simulation, the DeepSAT4D exhibits the
capability  to  predict  the complete diurnal  pattern of  surface NO2 concentra-
tions  (as  shown  in Figure  3),  with  elevated  concentrations  during  the  night
and  lower  levels  during  the  day.  Notably,  the  OMI  pass  time  typically  falls
during the period of the lowest NO2 concentrations throughout the day (in the
afternoon),  potentially  leading  to  high  biases  when  estimating  overall  daily-
averaged concentrations without  accounting for  the hourly  variations driven
by meteorological factors as did in most previous studies.

The daily  peak concentration of  NO2 can be up to twice as high,  domain-
wide, compared to the measurement time by OMI satellite, and this variation
can  range  from  3  to  8  times  across  different  spatial  locations.  DeepSAT4D
effectively exhibits its ability to interpolate the complete 24-hour variation in
NO2 concentrations,  which  is  generally  consistent  with  CMAQ  simulations.
However,  some uncertainties  may be present,  particularly  around 10:00 am,
corresponding to the traffic rush hour in the morning.

We  further  estimated  daily  mean  surface  NO2 concentrations  from  OMI-
retrieved  column  data  using  DeepSAT4D  for  the  2017-2021  period,  as
depicted  in Figure  4,  to  compare  with  ground-based  observations  from
CNEMC. It’s important to note the fundamental  differences in measurement
nature  between  OMI  satellite  data  (averaging  over  a  27  km  by  27  km  area)
and  ground-based  monitors  (measuring  at  specific  locations).  These  two
methods  measure  NO2 differently,  and  this  difference  can  be  significant,
particularly  for  NO2,  a  species  with  a  relatively  short  lifetime  that’s  greatly
influenced by emission sources and exhibits large spatial gradient at sub-grid
scale.44

To demonstrate this issue, we introduce the 1km-to-27 km Emission Ratio
(ER)  as  an  indicator.  ER  is  calculated  by  taking  the  ratio  of  the  maximum
emissions within 729 1-by-1 km grid cells within one 27-by-27 km grid cell to
the  average  emissions  of  all  729  1-by-1km  grid  cells.  These  emissions  are
based on 1 km spatially resolved emission data and can range from 1 to 729.
High ER values signify substantial spatial heterogeneity in emissions within a
given 27km grid cell and the potential for significant spatial gradients at sub-

grid scales.
Results suggest a good agreement between OMI predictions and ground-

based measurements for  sites with small  ER values (ranging from 1 to 10).
These  sites  are  primarily  located  in  eastern  China  and  exhibit  high  NO2

concentrations,  such  as  in  the  cities  of  Beijing,  Shanghai,  and  Guangzhou.
However,  as  ER  values  increase,  indicating  a  stronger  impact  from  spatial
heterogeneity  in  emissions,  the  discrepancy  between  OMI  predictions  and
ground-based measurements  becomes  more  substantial.  Significant  differ-
ences emerge in areas with strong spatial heterogeneity (ER > 20), and OMI-
predicted  NO2 concentrations  are  notably  lower  than  the  measurements
obtained from ground monitors. This discrepancy arises from the significant
spatial  heterogeneity  in  emissions,  impeding  ground-based  monitor  sites
from  accurately  representing  average  levels  for  the  entire  27km  grid  cell
observed  by  OMI.  This  challenge  extends  to  diurnal  variation  predictions
when compared against ground-based measurements (see Figure S5). While
DeepSAT4D effectively captures high concentrations during the night and low
concentrations during the day, OMI predictions tend to be higher than ground-
based  measurements  at  night  but  lower  during  the  day.  The  substantial
dispersion  during  the  daytime  results  in  larger  spatial  gradients  at  the  sub-
grid  scale,  leading  to  a  more  significant  underestimation  during  daytime.
Given that satellite products lack observations during nighttime, the assump-
tion completely relies on the CMAQ model, which is also subject to uncertain-
ties  associated  with  emissions  or  model  mechanisms.45 Leveraging  more
advanced  geostationary  satellite  products  with  hourly  temporal  resolution
measurements  could  prove  beneficial  in  improving  the  prediction  of  diurnal
variations  in  the  future.  It’s also  important  to  note  that  the  1  km grid  emis-
sions are established by downscaling data based on factors such as popula-
tion,  road  maps,  and  point  source  locations.  The  ER  data  may  also  suffer
uncertainties,  particularly  when  dealing  with  missing  point  sources,  which
can substantially elevate ER values, especially in rural areas where emissions
are scarce (represent by the ER<1 in Figure 4).

These  results  also  imply  that  traditional  data  fusion  or  machine  learning
methods that use all  available ground sites as ground truth for interpolating
NO2 concentrations  may  lead  to  significant  overestimation,  particularly  in
rural and western areas. Higher spatial resolution satellite data products can
help  mitigate  this  resolution  problem,  but  it’s  equally  crucial  to  have  more
detailed and widespread coverage of ground sites to provide valid data with
good representativeness at regional scale. 

Fast inference of NOx emission variations from OMI-satellite with Deep-
SAT4D

By  applying  temporal  interpolation  with  DeepSAT4D,  the  emissions  at  a
daily  averaged  scale  can  be  assimilated  to  align  with  the  two  time  slots
measured  by  the  OMI  satellite.  This  process  involves  a  machine-learning-
based  inversion  optimized  method,  specifically  the  Variational  Autoencoder
(VAE) detailed in the method section.  This approach enables DeepSAT4D to
rapidly estimate  changes  in  NOx  emissions  based  on  observed  concentra-
tion variations, as illustrated in Figure S6.

The  application  of  DeepSAT4D  for  estimating  NOx  emission  changes
during  the  period  from  2017  to  2021,  based  on  OMI-satellite  data,  is
presented in Figure 5. The results indicate higher emissions during winter and
lower  emissions  in  summer,  primarily  driven  by  winter  heating  activities  in
northern China. Interestingly, the estimated NOx emissions in early 2020 are
significantly  lower,  by  more  than  40%,  in  comparison  to  previous  years,
suggesting  the  impact  of  COVID-19  on  emissions.46-48 DeepSAT4D effec-
tively captures these changes across all  eight cities in China, demonstrating
its ability to monitor and analyze variations in emissions in near-real time. 

DISCUSSION
Satellite  products  hold  tremendous  potential  for  measuring  atmospheric

chemicals on a broad spatial-temporal scale. With the expansion of satellite
products  offering  increased  spatial  and  temporal  resolution,  satellite  data  is
expected to play an increasingly vital role in enhancing our understanding of
atmospheric  chemistry  and  its  associated  impacts.  However,  their  utility  is
restricted  by  the  absence  of  vertical  structure  and  diurnal  variations.  To
address  these  limitations,  this  study  developed  an  innovative  deep  learning
model  (DeepSAT4D)  which  is  capable  of  converting  satellite-measured
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column  density  into  comprehensive  four-dimensional  concentration  fields.
The  DeepSAT4D  has  been  effectively  deployed  for  the  retrieval  of  OMI-NO2

data  from  2017-2021  in  China,  clearly  demonstrating  its  proficiency  in
decomposing vertically  resolved NO2 information from column density  data,
accurately interpolating 24-hour NO2 concentrations based on OMI measure-
ments, and efficiently estimating NOx emission variations. These capabilities
provide invaluable support  for  research endeavours related to epidemiology,
human exposure, policy design, and air quality forecasting.

The  success  of  the  newly  developed  DeepSAT4D  relies  on  three  crucial
aspects that have been identified as key challenging issues as follows.

First,  DeepSAT4D effectively  addresses the limitation on vertical  structure
by harnessing information from surrounding grid cells, utilizing a deep-learn-
ing  architecture  based  on  CNN.  This  is  particularly  significant  because  high
values  across  the  spatial  domain  often  signify  emission  sources  or  urban
centers,  which exhibit  a typical  vertical  profile characterized by surface-level
abundance.  Conversely,  pollution  edges  or  diminishing  values  along  with
airflow  often  indicate  rural  areas,  where  the  vertical  profile  displays  more
contributions from higher altitudes due to the transport of air  into the upper
layers. It is important to incorporate such information serves as an additional
feature in establishing the relationship between column and surface concen-
trations.  Moreover,  considering  the  time  period  surrounding  the  data  with
variations  in  meteorological  conditions  proves  to  be  beneficial  in  identifying
the vertical  structure.  This  is  especially  crucial  for  pinpointing point  sources
like  power  plants  and  industry  combustions,  as  they  are  most  affected  by
meteorological  variations  during  the  plume  rising  process.  While  the  OMI-
satellite used in this study only provides data for one specific local time hour
(14:00) once a day, the implementation of geostationary satellites with hourly
data will significantly enhance the accuracy of vertical structure estimation in
the future.

Secondly, DeepSAT4D tackles the challenge of filling in missing hourly data
and estimating daily means from a single daily measurement taken at 14:00
local time from the OMI satellite. This is achieved by incorporating additional
features, encompassing both emission and meteorological factors that drive
the  diurnal  variation  of  NO2 concentration  throughout  the  day.  Recognizing
that meteorological variations tend to be more accurate and readily available
compared  to  emissions  data,  current  DeepSAT4D  is  designed  to  focus  on
reducing emissions variability  to  a  daily  average level.  Such design helps  to
avoid potential ill-posed problems that can arise when attempting to retroac-
tively adjust emissions based on concentration data, given the often complex
and  non-linear  relationship  between  emissions  and  concentrations.  This
approach  is  also  well-founded  as  it  aligns  with  the  notion  that  the  diurnal
variation  of  emissions  is  often  correlated  with  changes  in  meteorological
conditions. This concept finds support in models like the meteorology driven
emission  modeling  for  both  biogenic  (e.g.,  MEGAN49)  and  anthropogenic
emissions  (Met-Emis50). With  this  in  mind,  DeepSAT4D  effectively  interpo-
lates  NO2 concentrations for  the  other  23 hours  between two OMI-retrieved
time slots. This interpolation is made possible by incorporating hourly meteo-
rological  factors  and  drawing  upon  previously  established  knowledge  of
emission patterns acquired during the training phase, utilizing multiple CMAQ
simulations and advanced ConvLSTM structure. Consequently, this approach
enables  the  estimation  of  NO2 concentrations  throughout  the  day.  The
comparison  between  DeepSAT4D  predictions  and  ground-based measure-
ments also underscores a notable shortcoming in the integration of ground-
based data at the grid cell level. This limitation is accentuated by the consid-
erable  spatial  heterogeneity  observed  at  the  sub-grid  level,  which  can
substantially  undermine  the  representativeness  of  ground-based measure-
ments.  Furthermore,  it’s  crucial  to  acknowledge  that  these  ground-based
measurements  are  primarily  acquired  in  urban  centers  and  exhibit  distinct
vertical  profiles  when  contrasted  with  the  prediction  grids,  as  depicted  in
Figure  S7.  These  challenges  may  result  in  a  substantial  overestimation  of
ground-level  NO2 concentration  in  rural  areas  when  employing  traditional
machine-learning methods to integrate ground-based measurements directly
into  the  grid  cell,  as  depicted  in Figure  S8. In  contrast,  DeepSAT4D  predic-
tions align closely with CTM-based measurements, presenting a similar level
of ground-level NO2 concentration while exhibiting a spatial distribution much
closer to OMI-column data than the original CTM. This highlights DeepSAT4D’
s ability  to mitigate uncertainties associated with the CTM. However,  limita-

tions  persist,  especially  in  Tibet,  where  some  unusually  high  values  require
further  investigation  in  future  studies,  possibly  benefiting  from an increased
abundance of training data.

Thirdly,  our results demonstrate that DeepSAT4D is capable of accurately
estimating  surface  NO2 concentrations  while  efficiently  updating  emissions.
Through the VAE structure,  emissions are adjusted as a by-product to align
with  specified  concentration  points  at  24-hour  intervals.  Notably,  our  model
was trained using data from 2017 and effectively applied for the years 2018-
2021, all without the need for additional emission estimates or complex CTM
simulations,  thus  rendering  it  completely  CTM-free. These  findings  under-
score  the  tremendous  potential  of  DeepSAT4D  for  real-time  emission
updates to enhance the accuracy and efficiency for air quality forecasting in
the future.51-52

The  study  also  highlights  the  natural  connection  between  the  spatial-
temporal  relationship  in  NO2 concentrations,  which originate  from the same
emission  sources  and  evolve  through  atmospheric  processes  like  diffusion
and advection driven by meteorological factors. It demonstrates the feasibil-
ity  of  decoding  the  satellite-measured  column  density  back  into  chemical
concentrations at each layer and hour when a proper linkage is established.
This process can be considered an efficient means of fusing simulation data
with  satellite  observations  since  it  incorporates  modeling  information  as
features when developing the linkage.

This study focuses on the OMI-NO2 products, serving as a demonstration
of  the DeepSAT4D method.  It  is  highly  recommended to  utilize  more recent
satellite products with higher spatial and temporal resolution, such as Tropo-
spheric  Monitoring  Instrument  (TROPOMI),53 Geostationary  Environment
Monitoring Spectrometer (GEMS),54 and Himawari-855-57 in the future, while it’
s important to note that training DeepSAT4D with CTM simulations requires
corresponding  high  resolution  (about  4km).  This  poses  a  challenge  for
conducting  large-scale  CTM  simulations  at  the  national  or  global  level.
Furthermore, the results might be affected by the uncertainties inherent in the
CTM itself  and  the  absence  of  a  comprehensive  training  datasets,  particu-
larly  for  the  western  area  (as  indicated  by  relatively  poor  performance  in
Lhasa).  Nevertheless,  with  the  advancement  in  computational  abilities  and
machine  learning,  the  DeepSAT4D  method  introduced  in  this  study  can  be
readily  extended  to  other  pollutants  and  regions.  This  study  introduces  an
effective approach for training machine-learning models, leveraging physical
model  (e.g.,  CMAQ)  results  to  generate  diverse  datasets.  This  methodology
enhances  the  performance  of  data-driven  models,  such  as  DeepSAT4D.
While  the  physical  model  may  encounter  uncertainties  in  input  data  (e.g.,
meteorological  variables)  and  mechanisms,  it  undergoes  continuous
improvement  benefiting  from the  ongoing  growth  of  scientific  knowledge  in
atmospheric chemistry and physics. These uncertainties can be further miti-
gated,  allowing  DeepSAT4D  to  offer  more  accurate  and  reliable  predictions
for  chemical  concentrations  and  emissions  derived  from  satellite  products,
which can be useful to support the further analysis on atmospheric chemical
impacts on human health and Earth’s ecosystem.
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Table S1 Summary of input / output for DeepSAT4D 

Data ResNet Conv-LSTM Unet-LSTM 

Column density Input - - 

Hour 0/24* - - 

Vertical conc. Output Input Input 

Hour 0/24 Hour 0/24 Hour 0+24 

- Output Output 

- Hour 1-23 Hour 1-23 

Met. Input Input Input 

Hour 0/24 Hour 0-24 Hour 0-24 

Emis. - Input Output 

- daily daily 

*decoding the one-hour NO2 column measured at satellite pass time into the vertical layer-

specific hourly NO2 concentrations; Hours 0 and 24 correspond to the hour that aligns with the 

satellite pass time, while Hours 1-23 represent the intervening hours 

 

 

Table S2 Summary of WRF-CMAQ model simulation 

Scenario Name Meteorology Anthropogenic Emission 

1 2017-base 2017 2017 

2 2017-v2 2017 Increased randomly  

3 2017-v3 2017 Increased randomly 

4 BCC-ssp126 2050 ssp126 2050-low 

5 BCC-ssp585 2050 ssp585 2050-high 

*all scenarios are obtained from our previous study (Xing et al., 2022), First 15 days of each 

month of Scenario 1,3,4,5 was used for training; rest days of Scenario 1,3,4,5 and all days of 

Scenario 2 was used for testing 

  

  

  



Table S3 Comparison of DeepSAT4D predicted NO2 vertical profiles with observations 

Location Time 

Height 

range AGL 

(m) 

Variations (ppb per 100m) 

Reference 
Observation DeepSAT4D 

An industry 

park in YRD 

(30.16ºN, 

120.90ºE) 

Aug 19-21, 2020 

(9:00, 11:00, 13:00, 

15:00, 17:00 LT) 

0-100 -1.88 -2.03 

Chen et 

al., 2022 

100-300 -1.19 -0.42 

300-500 -1.30 -0.09 

Oct 21,24,25, 2020 

(9:00, 11:00, 13:00, 

15:00, 17:00 LT) 

0-100 -2.39 -2.48 

100-300 -1.64 -1.49 

300-500 -1.56 -0.07 

Dec 4, 6, 8, 2020 

(9:00, 11:00, 13:00, 

15:00, 17:00 LT) 

0-100 -6.85 -1.26 

100-300 -1.43 -0.78 

300-500 -1.53 -0.49 

Jan 28-30, 2021 

(9:00, 11:00, 13:00, 

15:00, 17:00 LT) 

0-100 -2.37 -1.68 

100-300 -2.14 -1.12 

300-500 -1.89 -0.56 

Mar 23-25, 2021 

(9:00, 11:00, 13:00, 

15:00, 17:00 LT) 

0-100 -5.81 -1.87 

100-300 -0.96 -0.57 

300-500 3.77 -0.19 

An urban 

residential 

area in 

Beijing 

(39.97ºN, 

116.37ºE) 

Apr 1 to May 31, 

2019 (8:00-10:00 

LT) 

0-500 -2.1 -3.00 

Kang et 

al., 2021 

500-1300 -0.50 -0.38 

1300-3000 -0.18 -0.20 

Apr 1 to May 31, 

2019 (11:00-13:00 

LT) 

0-500 -0.20 -0.30 

500-1300 -0.35 -0.31 

1300-3000 -0.12 -0.09 

Apr 1 to May 31, 

2019 (14:00-17:00 

LT) 

0-500 -0.30 -0.20 

500-1300 -0.20 -0.20 

1300-3000 -0.17 -0.09 

Remote area, 

Longfengshan 

in north 

eastern China 

(44.73ºN, 

127.60ºE) 

Oct 24, 2020-Oct 

13, 2021 (daytime) 

0-500 -0.11 -0.27 

Liu et al., 

2023 500-4000 -0.016 -0.019 

 

  



 

 

Figure S1 Simulation domain and location of cities and regions. 

  



Beijing Chengdu Guangzhou Harbin 

    
Lhasa Shanghai Urumqi Wuhan 

    
(a) 2017-base 

    

Beijing Chengdu Guangzhou Harbin 

    
Lhasa Shanghai Urumqi Wuhan 

    
(b) BCC-ssp126 

 

Figure S2 Comparison of vertical profiles of emissions among eight cities and surrounding area 

(data used in CMAQ simulations, local time 14:00 at annual mean level) 

  



 

Beijing Chengdu 

  
Guangzhou Harbin 

  
Lhasa Shanghai 

  
Urumqi Wuhan 

  
 

Figure S3. Spatial gradients of NO2 column density and surface NO2 concentration and in eight 

cities in BCC-ssp126 low emission scenario (selected the grid with highest surface concentration 

as the peak grid cell, and calculated the average concentrations in surrounding grid cells away 

from it by the distance up to 10 grid cells) 

  



 

 

Figure S4 Comparison of NO2 vertical profiles between CMAQ simulation and DeepSAT4D 

prediction.  

(Notably, the highest surface NO2 concentrations generally result in a greater concentration near 

the surface, while the surrounding areas exhibit higher NO2 levels aloft due to dispersion and 

transport processes. The DeepSAT4D effectively captures this pattern, utilizing spatial column 

density distribution and corresponding meteorological conditions.) 

  



Beijing Chengdu 

  
Guangzhou Harbin 

  
Lhasa Shanghai 

  
Urumqi Wuhan 

  
 

Figure S5. Comparison of diurnal variation of NO2 in eight cities predicted with DeepSAT4D 

with the ground measurement (unit: ppb) 

  



 

 

Figure S6 Comparison of DeepSAT4D reproduced emissions against with those used in CMAQ 

simulation across different scenarios (annual mean) with error bars representing the 5% and 95% 

percentiles across days  

S1

S2

S3

S4

S5



 

 

 

Figure S7 Comparison of vertical profiles of NO2 concentration (left: absolute value; right: 

normalized) between CNEMC site location grid cells and others  

(the presence of imbalanced samples from CNEMC grids may result in significant high biases 

when interpolating to rural areas, primarily due to the lack of vertical structure information.) 

  



 

 

Figure S8 Comparison of ground-level NO2 concentration between prediction from 

DeepSAT4D, traditional CTM-based (using CTM simulated ratio of xNO2 to ground NO2 

applied to the OMI column for each grid cell) and ML-based method (lightGBM method as 

described in our previous study, Xing et al., 2020), as well as the original CMAQ simulation and 

OMI-NO2 column density. 

  



 

 

Figure S9 ResNet Model structure 
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Figure S10 Performance of ResNet (all day averages)  



 

 

Figure S11 two-direction ConvLSTM model structure 
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Figure S12 performance of ConvLSTM  



 

 

 

 

 

Figure S13 Variational auto-encoder (VAE) model structure 
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Figure S14 performance of UNet-LSTM in reproducing the emissions 


	XINNGEOSCIENCE-2023-0115_print (7)
	INTRODUCTION
	MATERIALS AND METHODS
	Numerical model WRF/CMAQ
	ResNet structure and training (from column density decompose to vertical layers)
	ConvLSTM structure and training (from daily-averaged emission to concentration)
	UNet-LSTM structure and training (from 2-hour concentrations to daily-averaged emission)

	RESULTS
	DeepSAT4D performance in retrieving vertically revolved NO2 from column density
	DeepSAT4D performance in interpolating 24-hour NO2 from OMI pass time
	Fast inference of NOx emission variations from OMI-satellite with DeepSAT4D

	DISCUSSION
	REFERENCES
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	DECLARATION OF INTERESTS
	SUPPLEMENTAL INFORMATION
	LEAD CONTACT WEBSITE

	DeepSAT-SI_submitted3---------------------

