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• The regional background O3 concentra-
tion in China is estimated at 35 ± 4 ppb 
in 2020. 

• O3_RBG accounts for 81 % and 55 % of 
MDA8 O3 in clean and polluted condi-
tions, respectively. 

• O3_RBG dominates MDA8 O3 (>85 %) for 
all Chinese regions when O3 is lower 
than 60 ppb. 

• Natural emissions contribute more 
significantly to O3_RBG in China 
compared to meteorological factors.  
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A B S T R A C T   

Regional background ozone (O3_RBG) is an important component of surface ozone (O3). However, due to the 
uncertainties in commonly used Chemical Transport Models (CTMs) and statistical models, accurately assessing 
O3_RBG in China is challenging. In this study, we calculated the O3_RBG concentrations with the CTM – Brute Force 
Method (BFM) and constrained the results with site observations of O3 with the multiple linear regression (MLR) 
model. The annual average O3_RBG concentration in China region in 2020 is 35 ± 4 ppb, accounting for 81 ± 5 % 
of the maximum 8-h average O3 (MDA8 O3). We applied the random forest and Shapley additive explanations 
based on meteorological standardization techniques to separate the contributions of meteorology and natural 
emissions to O3_RBG. Natural emissions contribute more significantly to O3_RBG than meteorology in various 
Chineses regions (30–40 ppb), with higher contributions during the warm season. Meteorological factors show 
higher contributions in the spring and summer seasons (2–3 ppb) than the other seasons. Temperature and 
humidity are the primary contributors to O3_RBG in regions with severe O3 pollution in China, with their indi-
vidual impacts ranging from 30 % to 62 % of the total impacts of all meteorological factors in different seasons. 
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For policy implications, we tracked the contributions of O3_RBG and local photochemical reaction contributions 
(O3_LC) to total O3 concentration at different O3 levels. We found that O3_LC contribute over 45 % to MDA8 O3 on 
polluted days, supporting the current Chinese policy of reducing O3 peak concentrations by cutting down pre-
cursor emissions. However, as the contribution of O3_RBG is not considered in the policy, additional efforts are 
needed to achieve the control groal of O3 concentration. As the implementation of stringent O3 control mea-
surements in China, the contribution of O3_RBG become increasingly significant, suggesting the need for attention 
to O3_RBG and regional joint prevention and control.   

1. Introduction 

Ozone (O3) is a secondary air pollutant formed by the photochemical 
reactions of nitrogen oxides (NOx) and volatile organic compounds 
(VOCs) under the presence of sunlight (Zheng et al., 2023). Elevated 
surface O3 level is detrimental to human health due to its potent 
oxidizing properties (Gu et al., 2022; Hong and Chen, 2020; Lelieveld 
et al., 2015; World Health Organization. Regional Office for, E, 2021). It 
also poses risks to animals, plants, and their habitats, leading to a decline 
in global food production and disrupting the balance of the ecosystems 
(Yue et al., 2017). Additionally, O3 plays an important role in the global 
atmospheric radiation balance (Barnes et al., 2023; Rasmussen et al., 
2013) and can consequently influence atmospheric circulations (Rudeva 
et al., 2023). The annual O3 concentrations in China have been consis-
tently increasing by about 5 % per year during 2016–2020 (Guo et al., 
2023; Huang et al., 2018; Lu et al., 2020; Silver et al., 2018; Zheng et al., 
2017). The concentrations decreased by 1–2 μg/m3 in 2020 and 2021 
but rebounded by 5.8 % in 2022, leading to the exceedance of China's air 
quality standard of MDA8 O3 (80ppb) in 91 cities (https://www.mee. 
gov.cn/). O3 pollution has been a critical challenge facing China and 
has become the focus of the scientific communities and government 

agencies. 
The surface O3 concentration is the sum of regional background O3 

(O3_RBG) and O3 formed via local photochemical reactions (O3_LC). 
O3_RBG is defined as the O3 concentrations in the absence of anthropo-
genic sources (Lu et al., 2019). It is mainly generated from natural 
sources such as biogenic volatile organic compounds (BVOCs), soil ni-
trogen oxides (SNOx), lightning NOx (LNOx), wildfires, and methane 
oxidation (Li et al., 2022; McDonald-Buller et al., 2011), and from 
stratosphere-troposphere exchange (Knowland et al., 2017) and long- 
range transport (Mathur et al., 2022). On one hand, the implementa-
tion of anthropogenic emission control and management policies by 
government agencies is promising for the reduction of O3_LC (Li et al., 
2021). On the other hand, O3_RBG has contributed to the increase of O3 
concentrations in the past decade, mainly due to the promoted natural 
emissions due to changes in meteorological conditions (Chen et al., 
2022; Lu et al., 2019). Therefore, investigation of the characteristics of 
O3_RBG is of great importance in the mitigation of O3 pollution. 

It has been reported that O3_RBG accounts for about 70–80 % of the 
surface O3 concentrations in China (Chen et al., 2022; Lu et al., 2019), 
but there leave large uncertainties. Three methods have been commonly 
used to estimate the O3_RBG concentrations: (1) Estimation by observed 

Fig. 1. Study domain. (a) Green dots represent the locations of the national air quality monitoring stations. Background colors represent the divisions of seven 
geographic regions. (b) China's topographic map and the three regions classified by climate, altitude, and emission sources. 
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Fig. 2. (a) Boxplot of the performances of the WRF-CMAQ (O3_SIM) and MLR model (O3_MLR) on simulating O3 concentrations presented by mean bias (MB) of O3_SIM 
(in orange) and the MB of O3_MLR (in blue). The center line of the box represents the median, the square represents the mean, and the upper and lower edges of the 
box represent the 25th and 75th percentiles, respectively. (b, c) Performances of O3_SIM and O3_MLR for China and seven regions presented by normalized mean bias 
(NMB) and normalized mean error (NME). (d-f) Differences between MLR-adjusted and WRF-CMAQ simulated annual average concentrations of MDA8 O3 (d), O3_RBG 
(e) and O3_LC (f). The values are calculated as (MLR – WRF-CMAQ). 

Fig. 3. O3_RBG and O3_LC in China and specific regions in 2020. The column chart shows O3_RBG without a line and O3_LC with a line. The horizontal axis indicates 
different regions in China. The left vertical axis represents O3 concentrations levels, with green, red, orange, blue, and pink colors representing spring, summer, 
autumn, winter, and annual averages, respectively. The purple dots line and the right vertical axis represents the proportion of O3_RBG to MDA8 O3. 
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O3 at remote monitoring sites. However, it is difficult to avoid the in-
fluence of extensive human activities (Vingarzan, 2004). (2) Application 
of statistical methods such as principal component analysis (PCA) (Suciu 
et al., 2017), and Hidden Markov Models method (HMM) (Rizos et al., 
2022). The PCA method determines the principal concentrations of O3 at 
an observational site using an orthogonal matrix approach and considers 
it as the O3 background concentrations. The HMM method categorizes 
the O3 concentrations in a time-series dataset based on features such as 
anomalies and daily amplitude. This allows for the categorization of O3 
concentrations under different scenarios. The O3 concentrations of the 
most stable and predominant scenario are considered as the background 

O3. However, the statistical methods are based on mathematical re-
lationships without references to the chemical and physical mechanisms 
regarding O3 formation. (3) Application of the chemical transport 
models (CTM) (Atherton et al., 1996). This approach takes advantage of 
emulating the atmospheric reactions driven by chemical and physical 
processes and can therefore address the shortcomings of the statistical 
models. The CTM approach distinguishes the O3_RBG from the total O3 by 
the Brute Force Method (BFM) (Cheng et al., 2017; Skipper et al., 2021). 
The BFM approach reduces the emissions of the precursors (for example, 
anthropogenic NOx emissions) and simulates the changes in the con-
centrations of air pollutants (for example, O3 concentration) (Zhang 

Fig. 4. Spatial distribution of O3_RBG and the proportion of O3_RBG in MDA8 O3. Seasons are represented on the horizontal axis, and O3 categories (MDA8 O3, O3_RBG, 
the proportion of O3_RBG in MDA8 O3) on the vertical axis. 
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et al., 2014). However, the BFM approach could overlook the nonline-
arity between the emission reduction and response to air pollution (Xie 
et al., 2022; Zheng et al., 2018). Additionally, the CTM results are 
deviated from site observations of O3 due to the uncertainties in model 
inputs (for example, emission inventories and meteorological fields), 
and parameterization (for example, radiation scheme and gas chemistry 
mechanism) (Huang et al., 2019; Wang et al., 2022b; Xu et al., 2021). 

The obstacles above-mentioned quantification methods led to a 
vague understanding of O3_RBG, which is indicated by the inconsistent 
estimations from different studies. For example, Wang et al. (2011) used 
the Goddard Earth Observing System with Chemistry (GEOS-CHEM) 
model and reported that the annual O3_RBG concentrations ranged be-
tween 25–55 ppb in different regions of China. Li et al. (2012) used the 
Community Multiscale Air Quality Modeling System - Ozone Source 
Apportionment Technology (CAMx-OSAT) to analyze O3_RBG in the Pearl 
River Delta region of China and obtained 5–10 ppb higher results than 
that of Wang et al. (2011). Li et al. (2018) ran the WRF-CHEM model and 
found that O3_RBG contributed 10–25 ppb in northwestern China, which 
is 30 % lower than the assessments reported by Wang et al. (2011). Chen 
et al. (2022) quantified the O3_RBG via the relationship between tem-
perature and O3, and found that the O3_RBG values during the warm 
season in China ranges from 50 to 55 ppb, which are 10 ppb higher than 
the values estimated by the GEOS-CHEM results by Lu et al. (2019) and 
Wang et al. (2011). 

This study aims to improve our understanding of the O3_RBG con-
centrations and their role in the mitigation of O3 pollution in China. We 
simulated the O3_RBG and O3_LC by the CTM-BFM approach for China for 

the year 2020. The results are then constrained by the observed O3 
concentrations from monitoring sites with the multiple linear regression 
(MLR) model to derive the adjusted O3_RBG and O3_LC. On these bases, we 
investigated the spatial and seasonal variations of O3_RBG concentrations 
and discussed the major driving factors. Finally, we discussed the 
contribution of O3_RBG to total O3 pollution and gave insights into the 
mitigation of O3 pollution in China. 

2. Methodology 

2.1. Site observations 

Site observations of O3 (O3_OBS) were collected from the National Air 
Quality Monitoring Stations (AQMS) for the year 2020 (https://quotsoft 
.net/air/). We collected hourly data from 1462 sites (Fig. 1). The MDA8 
O3 concentrations (523,953 data sets in total) were used to evaluate the 
WRF-CMAQ model performance and build the MLR model. We also 
obtained the longitude, latitude, and altitude information of the stations 
for the MLR model. The meteorological data including temperature, 
relative humidity, wind speed, and wind direction with hourly temporal 
resolution were collected from the monitoring stations of the National 
Meteorological Bureau to evaluate the WRF performance (http://data. 
cma.cn/data). All data were preprocessed to exclude zero and nega-
tive values and outliners (see details in Xue et al., 2023). 

Fig. 5. The hourly concentrations of O3_rmw and O3_wc in different seasons. (a) to (d) correspond to the spring, summer, autumn, and winter seasons, respectively. 
The blue boxplots represent O3_wc, while the red boxplots represent O3_rmw. The vertical axis represents concentration, and the horizontal axis represents regions. 
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2.2. Study domain 

Fig. 1a presents the distributions of seven regions discussed in this 
study, including Northeastern China (NEC), North China (NC), East 
China (EC), Southern China (SC), Central China (CC), Northwestern 
China (NWC), and Southeast China (SWC). Detailed information about 
the geographic regions can be found in Table S1. Fig. 1b classifies the 
regions into three groups according to the topographies, climate zones, 
and emission sources. The NC, south EC, and southern NEC regions are 
in the eastern plain and hilly areas in eastern China (EPH region). This 
region has intensive human activities, and the NOx and VOCs emissions 
are dominated by anthropogenic sources. The CC, SC, northern NEC, and 

northern NEC regions are in the high-altitude area in central China (HAA 
region). This region is composed of mountains and plateaus, and the 
emissions mainly come from natural sources. The western parts of the 
NWC and SWC regions are mainly arid areas with low vegetation 
coverage in western China (ALV region). 

2.3. Model configuration 

The Weather Research and Forecasting model (WRF, v4.3) (Powers 
et al., 2017) coupled with the most updated Community Multiscale Air 
Quality model (CMAQ, v5.3.2) (Appel et al., 2021) system is applied to 
estimate the O3_RBG and O3_LC concentrations of surface O3 in China. The 

Fig. 6. Contributions of meteorological factors to O3_RBG in different regions in four seasons. T represents surface temperature, RH represents relative humidity, SSR 
represents the amount of radiation reaching the surface, WS represents wind speed and WD represents wind direction. The Shap value represents the contribution of 
meteorological factors obtained from the Shapley additive explanations to O3_RBG. 
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WRF model is driven by the National Centers for Environmental Pre-
diction National Center for Atmospheric Research Reanalysis data (htt 
ps://rda.ucar.edu/datasets/ds083.2), with a spatial resolution of 1◦ ×

1◦ and a temporal resolution of 6 h. The boundary conditions are 
updated every 6 h to provide the WRF model with boundary fields. In 
terms of the operating mechanism, the WRF model simulation utilizes 
the global Rapid Radiative Transfer Model long wave scheme (Bae et al., 
2016), the Goddard shortwave radiation scheme (Tao et al., 2016), the 
Yonsei University Planetary Boundary Layer scheme (Xie and Fung, 
2014), the Noah Multi-Physics land surface model (Zhang et al., 2016a) 
and the Purdue-Lin microphysics scheme (Mielikainen et al., 2014). The 
CMAQ model is a widely used CTM model in air pollution research 
(Simon et al., 2012; Zhang et al., 2016b). The CB06 gas phase chemistry 
mechanism, AERO06 aerosol chemistry (Luecken et al., 2019), and 
M3DRY dry deposition mechanism (Appel et al., 2021) are adopted 
within the modeling system. The Whole-Atmosphere Community 
Climate Model (WACCM) provides the boundary conditions for the 
CMAQ model at six-hour intervals. The simulation included a 15-day 
spin-up period. 

The model domain covers China and the surrounding area (Fig. 1), 
with a spatial resolution of 36 km × 36 km. The WRF model extends 6 
grid cells further on each side of the CMAQ model. We simulated the 
entire year of 2020 and demonstrated the results of the four seasons 
separately: spring (March, April, May), summer (June, July, August), 
autumn (September, October, November), and winter (January, 
February, December). For most regions of China, spring and summer are 
the warm seasons with the highest temperatures in summer. The warm 
season in the SC is autumn due to its proximity to the equator (Zhou and 
Huang, 2014). 

The emission inputs of the CMAQ model include both anthropogenic 
and natural emissions. The anthropogenic emission inventory within 
China is based on the Multi-resolution Emission Inventory of China 
(MEIC) for the year 2018 with a spatial resolution of 0.25◦ × 0.25◦ (Kang 
et al., 2016). It provides anthropogenic emissions from industry, power 
plants, agriculture, mobile, and residence. Emissions from anthropo-
genic sources outside China are from the Emission Database for Global 
Atmospheric Research (EDGAR) maintained by the European Commis-
sion (Olivier et al., 1994). The SNOx and BVOCs emissions are estimated 
by the Model of Emissions of Gases and Aerosols from Nature (MEGAN, 
v3.1) (Guenther, 2007). The emissions from wildfires are derived from 
the high spatiotemporal resolution fire inventory from NCAR (FINN) 
(Wiedinmyer et al., 2011). The other emission inputs are obtained from 
the online calculations of the CMAQ model. LNOx is determined by 
empirical relationships between lightning and convective precipitation, 
cloud layers, and others (Kang et al., 2019). The dependence of O3 on sea 
salt halogens relies on the Sea Spray Emissions Module (Kang et al., 
2019). Meanwhile, stratospheric transport is derived based on the cor-
relation between potential vorticity and stratospheric intrusion O3 (Xing 
et al., 2016). 

We obtained the model predicted O3 (O3_SIM), O3_RBG (O3_SRBG), and 
O3_LC (O3_SLC) concentrations by using the CTM-BFM method. We setup 
two scenarios, including the Base case and Control case. In the base case, 
we used the abovementioned emission inventories for anthropogenic 
and natural emissions. In the control case, we kept the same set-up as the 
base case but excluded the anthropogenic emissions of China. O3_SRBG is 
calculated by the control case. O3_SLC is calculated by the difference 
between the base case and the control case. 

Fig. 7. O3_RBG and O3_LC concentrations in different regions (except NWC and 
SWC) on polluted days and clean days. The outer circle represents clean days, 
and the inner circle represents polluted days. Blue color represents O3_RBG, and 
orange-red color represents O3_LC. The number on the left of the comma in-
dicates the concentration, and the number on the right indicates the contri-
bution to O3. 

Fig. 8. The variations of O3_RBG in different MDA8 O3 ranges. The y-axis represents the proportions of O3_RBG in MDA8 O3. The x-axis represents different MDA8 O3 
ranges. The dots line represents the trends of O3_RBG for China and error bars represents the maximum and minimum values of the seven geographical regions. The 
colors of the dots line indicate the concentrations of O3_RBG. The pink background represents MDA8 O3 ≥ 80 ppb, purple background represents stage1 (67 ppb <
MDA8 O3 < 77 ppb), purple background represents stage1 (67 ppb < MDA8 O3 < 77 ppb), green background represents stage2 (50 ppb < MDA8 O3 ≤ 67 ppb)，blue 
background represents stage3 (MDA8 O3 ≤ 50 ppb). 
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2.4. MLR model 

The MLR model has been widely used in the field of atmospheric 
pollution forecasting and analysis (Han et al., 2020; Hsu et al., 2022; 
Qian et al., 2022; Skipper et al., 2021). This method establishes a rela-
tionship between the dependent and independent variables, deriving 
corresponding regression coefficients (α) acting on the independent 
variables for a better fit of the dependent variable. This is accomplished 
through the least squares method, which minimizes the total sum of 
squared errors to find the optimal function and solve for α. 

O3_OBS are composed of O3_RBG and O3_LC (Eq. (1)). We employed the 
CTM-BFM method to simulate the O3_RBG (denoted as O3_SRBG) and O3_LC 
(denoted as O3_SLC) concentrations. These two values are deviated from 
the true value of O3_RGB and O3_LC due to bias in CTM and the BFM 
approach. We then establish the MLR model, where O3_SRBG and O3_SLC 
are constrained by O3_OBS (Eqs. (2)–(3)). As mentioned earlier, α, 
resolved by MLR, serves as an indicator of the degree to which simula-
tions are constrained by observations. The MLR model is described as 
follows: 

O3 OBS = O3 RBG +O3 LC (1)  

O3 RBG = O3 SRBG ×αRBG (X, Y, Z) (2)  

O3 LC = O3 SLC ×αLC (X, Y, Z) (3)  

where αRBG (αLC) represent α of O3_SRBG (O3_SLC). 
The αRBG and αLC values are affected by the geographic information 

(De Bock et al., 2014; Yan et al., 2020). In this study, we used the 
standardized longitude (X), latitude (Y), and altitude (Z) to improve the 
MLR performance and explain the deviation between simulation and 
observation as shown in Eqs. (4)–(5). 

αRBG (X,Y,Z) = α0,RBG + αX,RBG ×X + αY,RBG ×Y + αZ,RBG × Z (4)  

αLC (X,Y,Z) = α0,LC + αX,LC ×X + αY,LC × Y + αZ,LC ×Z (5) 

The MLR model solved the α values on the right side of Eqs. (4)–(5). 
Then, Eqs. (4)–(5) are substituted into Eqs. (2)–(3) to obtain the αRBG 
and αLC values. Each CTM grid has different α values based on X, Y, and Z 
information. Simultaneously, we obtain O3_SRBG (O3_SLC) constrained by 
O3_OBS and consider them as our assessments for O3_RBG (O3_LC). 

3. Results and discussion 

3.1. MLR improvements over CMAQ 

Fig. 2a, b, c demonstrates the performance of the WRF-CMAQ model 
in simulating the daily O3 concentrations. The overall performance of 
the WRF model is acceptable, with slight underestimation in tempera-
ture, wind speed, and slight overestimation in the relative humidity 
(detailed information in Table S2). The CMAQ model succeeded in 
capturing the distribution of MDA8 O3 in China (Fig. S1) but slightly 
overestimated the concentrations (Fig. 2a). The Correlation efficient (R) 
was 0.66, which is overall comparable or better than previous studies 
(Kuo and Fu, 2023). The normalized mean bias (NMB) and normalized 
mean error (NME) values were 25 % and 37 %, respectively and have 
both exceeded the benchmark by Emery et al. (2017) (Fig. 2b–c). 
Evaluations in different regions (Table S3) also indicate general over-
estimations of the O3 concentrations over the whole of China. The un-
certainty of CMAQ O3 modeling in the Chinese region are common. Even 
within the same study (Kuo and Fu, 2023), the simulation's R in same 
region may vary noticeably due to differences in simulation time period 
(0.4–0.8). Shi et al. (2021) and Xing et al. (2017) conducted simulations 
with different meteorological scenarios or for different regions nation-
wide. Their NMB exhibit considerable variations across different regions 
or months (− 50 % to 250 %, averaging 33 % and 32 %). The 

overestimation of O3 using CTM is mainly attributed to inventory input, 
chemical mechanisms, and boundary conditions used (Fink et al., 2023; 
Hou et al., 2022b; Xiong et al., 2023). The anthropogenic emission in-
ventory (MEIC) we utilized employed a bottom-up approach to calculate 
emissions of various atmospheric species. However, this approach often 
relies on the accuracy of statistical data and is prone to overlooking 
differences between cities, leading to disparities between predicted 
emissions and actual emissions (Saikawa et al., 2017; Wu et al., 2021). 
The gas chemical mechanism employed is based on SAPRC07, released 
in 2007, lacking some peroxyl radical and aromatic hydrocarbon re-
actions that could impact O3 simulation. Additionally, the chemical 
mechanism lacks numerous halogen reactions, and halogen reactions 
have a significant influence on OH and O3 production (Fan and Li, 2023; 
Yi et al., 2023). 

The MLR model performed an overall improvement on the over-
estimation of MDA8 O3 by the WRF-CMAQ model (Fig. 2a). The MLR 
model predicted an average 9 ppb lower O3 values than the WRF-CMAQ 
model and reduced the mean bias (MB) from 10 ppb to 3 ppb (Fig. 2b). 
The MLR succeeded in providing a closer estimation to the observed 
MDA8 O3 concentrations than the WRF-CMAQ model for all Chinese 
regions (Fig. 2a–c). In particular, the MLR model reduced the NMB and 
NME values of all regions to levels that were below the criterion stan-
dard (15 %). The improvements were most significant in the CC, SC, and 
NEC regions, followed by the NC and EC regions. The WRF-CMAQ 
performances were also improved in the NWC and SWC regions. How-
ever, we found large uncertainties in the interpretation of the results in 
this region due to the insufficient number of observational sites (Fig. 1a). 
Therefore, we retained the result for this region but excluded it in the 
following discussion. More details about α and MLR model performance 
can be found in Table S4-S5. 

Fig. 2d, e, f compares the spatial distributions of surface MDA8 O3, 
O3_RBG, and O3_LC simulated by the WRF-CMAQ model and those 
adjusted by MLR. The adjustments on the O3_RBG concentrations ranged 
between 4–20 ppb, especially in the HAA region. The changes in the 
O3_LC concentrations were <4 ppb and mainly took place in the ALV 
region where there remain large uncertainties as mentioned above. One 
possible reason is the overestimation of O3 formation of the HAA region 
caused by model underestimation in the cloud optical depth and un-
derestimation of O3 removal caused by underestimation of dry deposi-
tion (Ye et al., 2022). Since the CTM predicted higher O3_RBG than O3_LC, 
the adjustments by observations are higher on O3_RBG than O3_LC. 
Another possible reason points to the non-linear response of O3 to its 
precursors. Previous studies have indicated that when applying BFM to 
separate the contribution of natural and anthropogenic emissions, the 
sum of naturally sourced O3 and anthropogenic sourced O3 would be 
higher than the total-undifferentiated O3 concentrations, caused by the 
nonlinear response of O3 concentrations to changes in NOx and VOCs 
emissions (Fang et al., 2020; Kwok et al., 2015). In the BFM approach, 
after removing ANOx emissions in the control case, the whole research 
domain would be lack of ANOx titration reaction resulting in an over-
estimation of O3_RBG (Chen et al., 2022). Thus, the influence is more 
significant on NOx-limited regions than VOC-limited regions. According 
to Ren et al. (2022), most Chinese regions except the south NC region are 
NOx-limited and the south NC region is VOC-limited in the year 2020. 
This could well explain the spatial distribution of the adjustment in 
O3_RBG (Fig. 2d). 

We compared our results with previous studies by using statistical 
methods and CTM methods. Lu et al. (2019) used the GEOS-CHEM 
model and BFM approach to estimate the O3_RBG in China for year 
2016 and 2017. Our results were 4–5 ppb lower than theirs during 
May–August, and 6–7 ppb lower during March–April and Septem-
ber–October. Wang et al. (2022a) used the MLR-PCA- Texas Commission 
on Environmental Quality (TCEQ) system to estimate the O3_RBG in 
Shandong Province for years 2018–2020. Our result (38 ppb) for year 
2020 is slightly lower than theirs (41.5 ppb for the three years average), 
but rather comparable. Chen et al. (2022) estimate the O3_RBG by 
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estimating the stable O3 concentrations at a certain temperature range. 
Our results are 10–20 ppb lower than theirs during December–February 
and 3–10 ppb lower during May–August. Whether comparing with the 
O3 background concentrations obtained solely through the use of BFM in 
our study, or with findings from other studies, the O3 background con-
centrations derived from MLR-BFM in our study are consistently lower. 
It is worth noting that the differences in research time period and inputs 
will inevitably affect the results. However, comparing with others can 
still serve as a valid reference and is necessary, especially when we focus 
on the final O3_RBG obtained. 

3.2. Spatial distribution of O3_RBG and its contribution to total O3 

Fig. 3 summarizes the concentrations of O3_RBG and O3_LC in seven 
regions of China. Fig. 4 shows the spatial variations of O3 and O3_RBG in 
different seasons. The O3_RBG ranged between 22–45 ppb and averaged 
at 35 ± 4 ppb in China for the year 2020. Compared to the spatial dis-
tribution of O3 (Fig. 4a), distribution of O3_ RBG is relatively homogenous 
(Fig. 4b). The EC region has the highest O3_RBG concentrations (37 ppb), 
followed by the NC (36 ppb), CC (35 ppb), SC (34 ppb) regions and the 
other regions (32–33 ppb). The contribution of O3_RBG to total O3 ranged 
between 71–92 % and averaged at 81 ± 5 % over China. The HAA region 
has a 10 % higher proportion of O3_RBG in MDA8 O3 (85%) than the EPH 
region (75 %) (Fig. 4c). 

The HAA region has generally higher O3_RBG concentrations than the 
EPH region. Research suggests that factors such as the elevated inversion 
layer and the influence of pollutants' mesoscale circulation at higher 
altitudes contribute to elevated O3 concentrations in mountainous areas 
(Guo et al., 2013). In addition, stratosphere-troposphere intrusion of O3 
in western and northwestern China at higher altitudes could induce 
about 5–10 ppb of O3 during lightning-active months (Lu et al., 2019; 
Roy et al., 2017; Xu et al., 2016). Due to lower anthropogenic VOCs 
(AVOCs) emissions in the HAA region, this region has a high proportion 
of O3_RBG. 

For the EPH region, the large emissions of SNOx (and soil HONO) are 
one of the reasons for high O3_RBG in the southern of NC and northern of 
EC regions during summer (Lu et al., 2019; Lyu et al., 2022; Xue et al., 
2021; Huang et al., 2023) (Fig. 4i). The concentrations in coastal region 
(EC and NC) are about 1–4 ppb higher than that in inland region, which 
may reflect the contribution of marine background O3 (Lam et al., 2001; 
Wang et al., 2022a). 

3.3. Driving factors of seasonal variations of O3_RBG 

Meteorology (solar radiation, temperature, precipitation, etc.) and 
natural emissions are the main drivers of the seasonal distributions of 
O3_RBG in China. To get insights into the contributions of meteorological 
factors and natural emissions to O3_RBG, we adopted meteorological 
standardization, random forest, and Shapley additive explanations to 
interpret the driving forces of O3_RBG. We derived hourly contributions 
of meteorology (O3_RBG concentration of weather contribution, O3_wc) 
and natural emissions (O3_RBG concentration of removing meteorology, 
O3_rmw) to O3_RBG (Fig. 5). Additionally, based on previous studies 
employing this method, we identified the meteorological factors that 
have a relatively significant impact on O3 and determined their contri-
butions (Shap value from Shapley additive explanations) to O3_RBG 
(Fig. 6). More details about our machine learning method can be found 
in Xue et al. (2023), Hou et al. (2022a), and Grange et al. (2018). Model 
performance evaluation about our machine learning methods is shown 
in Table S6. 

From the results, it is evident that O3_rmw contribute more to O3_RBG 
on average than O3_wc, a commonality across all regions and seasons. 
The extreme values of O3_wc's contribution differ more significantly than 
O3_rmw's, with instances of negative contributions, indicating substantial 
fluctuations in meteorological contributions. In spring (Fig. 5a), mete-
orological conditions favor O3_RBG production (Feng and Wang, 2020), 

and O3_wc's overall average contribution is 2 ppb (1.4 ppb to 5 ppb). The 
relatively high emissions of BVOCs and SNOx (Dai et al., 2018; Mohanty 
and Panda, 2011; Ruan et al., 2004) result in O3_rmw being in a higher 
concentration range (36–39 ppb). With the arrival of summer (Fig. 5b), 
O3_rmw in most areas (except the NEC region and SC region, discussed 
later) enters a period of highest concentration (37–40 ppb), associated 
with further enhanced emissions of BVOCs and SNOx. O3_wc in heavily 
polluted areas like the NC region and EC region also reach peaking 
concentrations (4.6 ppb, 7.7 ppb). In the NEC region, O3_rmw contributes 
more in spring, aligning with the fact that its O3_RBG and MDA8 O3 are 
highest in spring (Shang et al., 2023). In the SC region, autumn has the 
highest emissions of BVOCs and SNOx, hence the highest autumn O3_rmw 
(Fig. 5, c). Additionally, SC is the only region where O3_wc is positive in 
autumn (1.03 ppb), as the SC region experiences weather conditions in 
autumn conducive to O3 production. For other regions, both O3_rmw and 
O3_wc contributions are lower in autumn and winter compared to spring 
and summer, atribute to reduced emissions of BVOCs and SNOx and 
meteorological conditions less favorable for O3 production. In winter 
(Fig. 5d), radiation hits its yearly minimum, temperatures drop, and 
wind speeds increase. For most regions in China, O3_wc contributions 
reach their yearly minimum. 

Fig. 6 illustrates the contributions of various meteorological factors 
to O3_RBG in different regions in different seasons. Regarding the 
contribution of meteorology to O3_RBG, it's noteworthy that there are 
apparent negative contributions. Therefore, we additionally take the 
absolute values of meteorological factors' contributions to O3_RBG in 
Fig. S2 to illustrate the influencing capacity of meteorological factors on 
O3_RBG. In spring, humidity has the highest contribution in the CC, NC, 
and SC regions (1.3–1.9 ppb), and its absolute impact is also higher (30 
%–40 %). The EC region exhibits a larger contribution from radiation 
(0.52 ppb), with relative humidity ranking second (0.47 ppb), but the 
absolute impact of temperature is the highest (29 %). For the NEC re-
gion, different from other regions, both radiation and wind speed 
contribute more (both 1 ppb). In summer, temperature dominates the 
contributions in two O3 heavily polluted regions, the EC region and NC 
region (3.8 ppb and 5.3 ppb), with absolute contributions of 46 % and 
52 %, emphasizing the impact of temperature and hot weather on 
heavily polluted areas. The CC region is also more influenced by hu-
midity (2.9 ppb), but the contribution of temperature shifts from − 1.2 
ppb in spring to a positive contribution of 1.7 ppb. In autumn, temper-
ature continues to contribute positively in the EC region but decreases to 
0.38 ppb. Humidity becomes the more influential meteorological factor 
in the EC region (45 %). In the northern latitudes, where temperatures 
are colder in the NC region and CC region, temperature becomes a 
negative contributor (− 1.4 ppb and − 1.07 ppb), with the highest ab-
solute impact (34 % and 36 %). In winter, the NC region is still most 
significantly influenced by temperature (43 %), contributing − 4.1 ppb. 
In the EC region, the contribution from temperature is − 4.13 ppb, 
dominating the meteorological factors, with an absolute impact per-
centage of 62 %. Overall, for heavily polluted areas like the NC region 
and EC region, temperature plays a predominant role in influencing O3, 
while humidity has a greater impact in the SC region. For other regions, 
the CC region is mainly influenced by humidity, and the NEC region is 
significantly influenced by temperature, radiation, and wind speed. 

3.4. Contributions at different O3 levels 

Although China has implemented ambitious emission reduction 
plans for anthropogenic VOCs and NOx over the past decade, the annual 
variation in O3 concentration remains fluctuating without a clear 
downward trend. We analyze the forms of O3 pollution in China from the 
perspective of O3_RBG and O3_LC contributions. Fig. 7 shows the average 
O3_RBG and O3_LC on clean days (MDA8 O3 < 80 ppb) and polluted days 
(MDA8 O3 ≥ 80 ppb) for different regions. On clean days, the average 
O3_RBG concentration is around 34 ppb and contributes 81 % to total O3. 
On polluted days, the average O3_RBG value increased to 45 ppb but the 
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contribution decreased to 55 %, indicating the relatively higher con-
tributions from anthropogenic precursor emissions. There is a significant 
increase in the proportion of O3_LC on pollution days in all regions (an 
average increase of 250 % compared to clean days). In NC and SC re-
gions, the O3_RBG (49 ppb, 47 ppb) on polluted days is higher compared 
to other areas, corresponding to elevated emissions of biogenic pre-
cursors in these two regions. It is worth noting that the NEC region has 
the highest increase in O3_LC contribution on pollution days. This may be 
due to the fact that, unlike other regions, the contribution of external O3 
in the warm season of NEC exceeds 60 %, the concentration of precursor 
substances from local anthropogenic sources is lower, and the ability of 
NO to titrate O3 is weak (Fang et al., 2021). Detailed assessments for 
each province can be found in Table S7-S9. 

To further analyze the relative contributions of O3_RBG and O3_LC to 
environmental O3 pollution control policies, we sampled MDA8 O3 
every 5 ppb and tracked the changes in O3_RBG and O3_LC (Fig. 8). Over 
the past decade, China's MDA8 O3 90th percentile mainly remained 
within the Stage 1 range (67–77 ppb, Fig. 6, Stage 1). We found that the 
substantial contribution of O3_LC on polluted days leads to extremely 
high concentrations of MDA8 O3, supporting the current Chinese strat-
egy of reducing peak O3 concentrations. Additionally, O3_LC constitutes 
35–40 % of MDA8 O3, indicating that there is still a considerable amount 
of O3_LC that can be reduced. This supports the Chinese government's 
view of strengthening the reduction of anthropogenic VOCs and NOx to 
reduce O3 concentrations. However, it is worth noting that in Stage 1, 
the proportion of O3_RBG has already reached 60–65 %. This implies that 
if O3 concentrations are reduced solely by decreasing anthropogenic 
VOCs and NOx, while neglecting the contribution of O3_RBG, the effec-
tiveness may be reduced by more than half. Stage 2 represents the next 
target for China after escaping the O3 concentration range from Stage 1. 
Since the Chinese government has not clearly specified the expected 
range of future O3 concentrations, we adopted the World Health Orga-
nization's recommended 50 ppb as the target, considered an acceptable 
O3 concentration. We defined the range of 50–67 ppb as Stage 2 (Fig. 8, 
Stage 2), representing the O3 concentration reduction that China still 
needs to achieve. To reach a pollution-free level, China needs to reduce 
the O3 concentration by at least 17 ppb. In this process, the proportion of 
O3_RBG will increase from 66 % to 73 %. This emphasizes the importance 
of O3_RBG and underscores the necessity of strengthening inter-regional 
joint prevention and control measures to transition from Stage 2 to 
Stage 3 (below 50 ppb, Fig. 8, Stage 3) and achieve the goal. 

3.5. Uncertainty analysis 

There are two primary factors contributing to the uncertainties in 
estimating O3_RBG. The first is related to uncertainties of MLR. The 
choice of independent variables affects the way the dependent variable 
is interpreted. In this study, we standardized the independent variables 
into consistent concentration units and estimated the impact of O3 
background concentrations, local photochemical reactions, standard-
ized normalized longitude, standardized normalized latitude, and stan-
dardized normalized altitude on observed O3. However, it is worth 
noting that O3 background concentrations and local photochemical re-
actions predominantly account for the influences, which have been 
confirmed by others as well (Skipper et al., 2021). Therefore, the in-
clusion of additional independent variables has minimal overall impact 
on the relationship between total O3 and O3 background concentrations 
and local photochemical reactions. On the other hand, The training 
dataset also influences the results of MLR, similar to machine learning, 
where a large and valid dataset leads to more convincing and satisfac-
tory outcomes (Shang et al., 2023). This is also why we excluded data 
from the ALV region, as the available training data is too limited 
compared to the extensive area. 

4. Conclusions 

In this study, we applied the MLR method to constrain model pre-
dicted O3 and O3_RBG from CTM with site observations of O3. There has 
not been a report using this method to assess China's O3 background 
concentrations. Our results demonstrate that this approach has signifi-
cant improvement on the CTM model performance on predicting O3 over 
the whole of China. We estimated the average O3_RBG in China to be 35 
± 4 ppb, accounting for 81 ± 5 % of MDA8 O3. The O3_RBG concentra-
tions are higher in warm seasons (spring 39 ppb, summer 38 ppb) than in 
cold seasons (winter 31 ppb, autumn 30 ppb). Their contributions to 
total O3 are slightly lower in the warm seasons (78 %) than cold seasons 
(83 %). Natural emissions contribute (31–40 ppb) more significantly 
than meteorology to O3_RBG in various regions and seasons. Meteoro-
logical contributions exhibit greater fluctuations, with negative contri-
butions, reaching a seasonal average of 4.6–7.7 ppb during the summer 
in heavily polluted areas (EC and NC regions). Temperature and relative 
humidity emerge as the two predominant meteorological factors with 
the highest impact in urban areas, with their contributions ranging from 
30 % to 62 %. 

We further investigated the role of O3_RBG in controlling O3 pollution. 
The average O3_RBG concentration is 34 ppb on clean days (daily MDA8 
O3 < 80 ppb) and contributes 81 % to total O3. The value increased to 45 
ppb on polluted days (daily MDA8 O3 > 80 ppb) and contributes 55 % to 
total O3. The contribution of O3_LC on pollution days over 45 %, sup-
porting the current Chinese policy's goal of reducing O3 peak concen-
trations by minimizing anthropogenic precursor emissions. Within the 
O3 concentration 90th percentile range of the past decade, O3_LC has 
contributed 35–40 % to MDA8 O3. This supports the Chinese govern-
ment's view of strengthening the reduction of anthropogenic precursor 
emissions to lower O3 concentrations. However, O3_RBG's contribution to 
MDA8 O3 already exceeds half and is expected to rise to 73 % with 
further reduction in anthropogenic precursor emissions, reaching the 
WHO-recommended target of 50 ppb. Therefore, there is a critical need 
to emphasize the importance of including O3_RBG in policies, an aspect 
currently missing, and to prioritize regional joint prevention and control 
measures. 
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Jutterström, S., Jalkanen, J.P., Majamäki, E., 2023. Potential impact of shipping on 
air pollution in the Mediterranean region - a multimodel evaluation: comparison of 
photooxidants NO2 and O3. Atmos. Chem. Phys. 23, 1825–1862. 

Grange, S.K., Carslaw, D.C., Lewis, A.C., Boleti, E., Hueglin, C., 2018. Random forest 
meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. 
Phys. 18, 6223–6239. 

Gu, X., Wang, T., Li, C., 2022. Elevated ozone decreases the multifunctionality of 
belowground ecosystems. Glob. Chang. Biol. 29, 890–908. 

Guenther, A., 2007. Estimates of global terrestrial isoprene emissions using MEGAN 
(model of emissions of gases and aerosols from nature) (vol 6, pg 3181, 2006). 
Atmos. Chem. Phys. 7, 4327. 

Guo, H., Ling, Z.H., Cheung, K., Jiang, F., Wang, D.W., Simpson, I.J., Barletta, B., 
Meinardi, S., Wang, T.J., Wang, X.M., Saunders, S.M., Blake, D.R., 2013. 
Characterization of photochemical pollution at different elevations in mountainous 
areas in Hong Kong. Atmos. Chem. Phys. 13, 3881–3898. 

Guo, J., Zhang, X., Gao, Y., Wang, Z., Zhang, M., Xue, W., Herrmann, H., Brasseur, G.P., 
Wang, T., Wang, Z., 2023. Evolution of ozone pollution in China: what track will it 
follow? Environ. Sci. Technol. 57, 109–117. 

Han, H., Liu, J.E., Shu, L., Wang, T.J., Yuan, H.L., 2020. Local and synoptic 
meteorological influences on daily variability in summertime surface ozone in 
eastern China. Atmos. Chem. Phys. 20, 203–222. 

Hong, X., Chen, Z., 2020. Simulation study on typical ozone pollution process in the 
southeast coast of China in spring. Environ. Sci. Technol. 43, 105–114. 

Hou, L., Dai, Q., Song, C., Liu, B., Guo, F., Dai, T., Li, L., Liu, B., Bi, X., Zhang, Y., Feng, Y., 
2022a. Revealing drivers of haze pollution by explainable machine learning. 
Environ. Sci. Technol. Lett. 9, 112–119. 

Hou, T.Y., Yu, S.C., Jiang, Y.P., Chen, X., Zhang, Y.B., Li, M.Y., Li, Z., Song, Z., Li, P.F., 
Chen, J.M., Zhang, X.Y., 2022b. Impacts of chemical initial conditions in the WRF- 
CMAQ model on the ozone forecasts in eastern China. Aerosol Air Qual. Res. 22. 

Hsu, C.Y., Chang, Y.T., Lin, C.J., 2022. How a winding-down oil refinery park impacts air 
quality nearby? Environ. Int. 169. 

Huang, J., Pan, X., Guo, X., Li, G., 2018. Health impact of China’s air pollution 
prevention and control action plan: an analysis of national air quality monitoring 
and mortality data. Lancet Planet. Health 2, e313–e323. 

Huang, L., Fang, J., Liao, J., Greg, Y., Chen, H., Wang, Y., Li, L., 2023. Insights into soil 
NO emissions and the contribution to surface ozone formation in China. EGUsphere 
2023, 1–19. 

Huang, Z.J., Zheng, J.Y., Ou, J.M., Zhong, Z.M., Wu, Y.Q., Shao, M., 2019. A feasible 
methodological framework for uncertainty analysis and diagnosis of atmospheric 
chemical transport models. Environ. Sci. Technol. 53, 3110–3118. 

Kang, D., Foley, K.M., Mathur, R., Roselle, S.J., Pickering, K.E., Allen, D.J., 2019. 
Simulating lightning NO production in CMAQv5.2: performance evaluations. Geosci. 
Model Dev. 12, 4409–4424. 

Kang, Y.N., Liu, M.X., Song, Y., Huang, X., Yao, H., Cai, X.H., Zhang, H.S., Kang, L., 
Liu, X.J., Yan, X.Y., He, H., Zhang, Q., Shao, M., Zhu, T., 2016. High-resolution 
ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 16, 
2043–2058. 

Knowland, K.E., Doherty, R.M., Hodges, K.I., Ott, L.E., 2017. The influence of mid- 
latitude cyclones on European background surface ozone. Atmos. Chem. Phys. 17, 
12421–12447. 

Kuo, C.-P., Fu, J.S., 2023. Ozone response modeling to NOx and VOC emissions: 
examining machine learning models. Environ. Int. 176, 107969. 

Kwok, R.H.F., Baker, K.R., Napelenok, S.L., Tonnesen, G.S., 2015. Photochemical grid 
model implementation and application of VOC, NOx, and O-3 source apportionment. 
Geosci. Model Dev. 8, 99–114. 

Lam, K.S., Wang, T.J., Chan, L.Y., Wang, T., Harris, J., 2001. Flow patterns influencing 
the seasonal behavior of surface ozone and carbon monoxide at a coastal site near 
Hong Kong. Atmos. Environ. 35, 3121–3135. 

Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of 
outdoor air pollution sources to premature mortality on a global scale. Nature 525, 
367. 

Li, A., Zhou, Q., Xu, Q., 2021. Prospects for ozone pollution control in China: an 
epidemiological perspective. Environ. Pollut. 285, 117670. 

Li, J.R., Kohno, N., Sakamoto, Y., Pham, H.G., Murano, K., Sato, K., Nakayama, T., 
Kajii, Y., 2022. Potential factors contributing to ozone production in AQUAS-Kyoto 
campaign in summer 2020: natural source-related missing OH reactivity and 
heterogeneous HO2/RO2 loss. Environ. Sci. Technol. 56, 12926–12936. 

Li, N., He, Q.Y., Greenberg, J., Guenther, A., Li, J.Y., Cao, J.J., Wang, J., Liao, H., 
Wang, Q.Y., Zhang, Q., 2018. Impacts of biogenic and anthropogenic emissions on 
summertime ozone formation in the Guanzhong Basin, China. Atmos. Chem. Phys. 
18, 7489–7507. 

Li, Y., Lau, A.K.H., Fung, J.C.H., Zheng, J.Y., Zhong, L.J., Louie, P.K.K., 2012. Ozone 
source apportionment (OSAT) to differentiate local regional and super-regional 
source contributions in the Pearl River Delta region, China. J. Geophys. Res.-Atmos. 
117. 

Lu, X., Zhang, L., Chen, Y.F., Zhou, M., Zheng, B., Li, K., Liu, Y.M., Lin, J.T., Fu, T.M., 
Zhang, Q., 2019. Exploring 2016-2017 surface ozone pollution over China: source 
contributions and meteorological influences. Atmos. Chem. Phys. 19, 8339–8361. 

Lu, X., Zhang, L., Wang, X., Gao, M., Li, K., Zhang, Y., Yue, X., Zhang, Y., 2020. Rapid 
increases in warm-season surface ozone and resulting health impact in China since 
2013. Environ. Sci. Technol. Lett. 7, 240–247. 

Luecken, D.J., Yarwood, G., Hutzell, W.T., 2019. Multipollutant modeling of ozone, 
reactive nitrogen and HAPs across the continental US with CMAQ-CB6. Atmos. 
Environ. 201, 62–72. 

Lyu, X., Guo, H., Zou, Q., Li, K., Xiong, E., Zhou, B., Guo, P., Jiang, F., Tian, X., 2022. 
Evidence for reducing volatile organic compounds to improve air quality from 
concurrent observations and in situ simulations at 10 stations in Eastern China. 
Environ. Sci. Technol. 56, 15356–15364. 

Mathur, R., Kang, D.W., Napelenok, S.L., Xing, J., Hogrefe, C., Sarwar, G., Itahashi, S., 
Henderson, B.H., 2022. How have divergent global emission trends influenced long- 
range transported ozone to North America? J. Geophys. Res.-Atmos. 127. 

McDonald-Buller, E.C., Allen, D.T., Brown, N., Jacob, D.J., Jaffe, D., Kolb, C.E., 
Lefohn, A.S., Oltmans, S., Parrish, D.D., Yarwood, G., Zhang, L., 2011. Establishing 
policy relevant background (PRB) ozone concentrations in the United States. 
Environ. Sci. Technol. 45, 9484–9497. 

Mielikainen, J., Huang, B.M., Huang, A.H.L., 2014. Initial results on computational 
performance of Intel Many Integrated Core (MIC) architecture: implementation of 
the weather and research forecasting (WRF) Purdue-Lin microphysics scheme. In: 
Conference on High-Performance Computing in Remote Sensing IV. Amsterdam, 
Netherlands. 

Mohanty, R.B., Panda, T., 2011. Soil respiration and microbial population in a tropical 
deciduous forest soil of Orissa, India. Flora 206, 1040–1044. 

Olivier, J.G.J., Bouwman, A.F., van der Maas, C.W.M., Berdowski, J.J.M., 1994. Emission 
database for global atmospheric research (Edgar). Environ. Monit. Assess. 31, 
93–106. 

Powers, J.G., Klemp, J.B., Skamarock, W.C., Davis, C.A., Dudhia, J., Gill, D.O., Coen, J.L., 
Gochis, D.J., Ahmadov, R., Peckham, S.E., Grell, G.A., Michalakes, J., Trahan, S., 
Benjamin, S.G., Alexander, C.R., Dimego, G.J., Wang, W., Schwartz, C.S., Romine, G. 
S., Liu, Z., Snyder, C., Chen, F., Barlage, M.J., Yu, W., Duda, M.G., 2017. The weather 
research and forecasting model: overview, system efforts, and future directions. Bull. 
Am. Meteorol. Soc. 98, 1717–1737. 

Z. Sun et al.                                                                                                                                                                                                                                      



Science of the Total Environment 912 (2024) 169411

12

Qian, J., Liao, H., Yang, Y., Li, K., Chen, L., Zhu, J., 2022. Meteorological influences on 
daily variation and trend of summertime surface ozone over years of 2015–2020: 
quantification for cities in the Yangtze River Delta. Sci. Total Environ. 834. 

Rasmussen, D.J., Hu, J., Mahmud, A., Kleeman, M.J., 2013. The ozone–climate penalty: 
past, present, and future. Environ. Sci. Technol. 47, 14258–14266. 

Ren, J., Guo, F.F., Xie, S.D., 2022. Diagnosing ozone-NOx-VOC sensitivity and revealing 
causes of ozoneincreases in China based on 2013–2021 satellite retrievals. Atmos. 
Chem. Phys. 22, 15035–15047. 

Rizos, K., Meleti, C., Kouvarakis, G., Mihalopoulos, N., Melas, D., 2022. Determination of 
the background pollution in the Eastern Mediterranean applying a statistical 
clustering technique. Atmos. Environ. 276. 

Roy, C., Fadnavis, S., Muller, R., Ayantika, D.C., Ploeger, F., Rap, A., 2017. Influence of 
enhanced Asian NOx emissions on ozone in the upper troposphere and lower 
stratosphere in chemistry-climate model simulations. Atmos. Chem. Phys. 17, 
1297–1311. 

Ruan, H.H., Zou, X.M., Scatena, E., Zimmerman, J.K., 2004. Asynchronous fluctuation of 
soil microbial biomass and plant litterfall in a tropical wet forest. Plant Soil 260, 
147–154. 

Rudeva, I., Boschat, G., Lucas, C., Ashcroft, L., Pepler, A., Hope, P., 2023. Atmospheric 
trends explained by changes in frequency of short-term circulation patterns. 
Commun. Earth Environ. 4, 127. 

Saikawa, E., Kim, H., Zhong, M., Avramov, A., Zhao, Y., Janssens-Maenhout, G., 
Kurokawa, J., Klimont, Z., Wagner, F., Naik, V., Horowitz, L.W., Zhang, Q., 2017. 
Comparison of emissions inventories of anthropogenic air pollutants and greenhouse 
gases in China. Atmos. Chem. Phys. 17, 6393–6421. 

Shang, N., Gui, K., Zhao, H., Yao, W., Zhao, H., Zhang, X., Zhang, X., Li, L., Zheng, Y., 
Wang, Z., Wang, Y., Che, H., Zhang, X., 2023. Decomposition of meteorological and 
anthropogenic contributions to near-surface ozone trends in Northeast China 
(2013− 2021). Atmos. Pollut. Res. 14, 101841. 

Shi, L., Zhu, A., Huang, L., Yaluk, E., Gu, Y., Wang, Y., Wang, S., Chan, A., Li, L., 2021. 
Impact of the planetary boundary layer on air quality simulations over the Yangtze 
River Delta region, China. Atmos. Environ. 263, 118685. 

Silver, B., Reddington, C.L., Arnold, S.R., Spracklen, D.V., 2018. Substantial changes in 
air pollution across China during 2015–2017. Environ. Res. Lett. 13. 

Simon, H., Baker, K.R., Phillips, S., 2012. Compilation and interpretation of 
photochemical model performance statistics published between 2006 and 2012. 
Atmos. Environ. 61, 124–139. 

Skipper, T.N., Hu, Y., Odman, M.T., Henderson, B.H., Hogrefe, C., Mathur, R., Russell, A. 
G., 2021. Estimating US background ozone using data fusion. Environ. Sci. Technol. 
55, 4504–4512. 

Suciu, L.G., Griffin, R.J., Masiello, C.A., 2017. Regional background O3 and NOx in the 
Houston–Galveston–Brazoria (TX) region: a decadal-scale perspective. Atmos. Chem. 
Phys. 17, 6565–6581. 

Tao, W.K., Wu, D., Lang, S., Chern, J.D., Peters-Lidard, C., Fridlind, A., Matsui, T., 2016. 
High-resolution NU-WRF simulations of a deep convective-precipitation system 
during MC3E: further improvements and comparisons between Goddard 
microphysics schemes and observations. J. Geophys. Res.-Atmos. 121, 1278–1305. 

Vingarzan, R., 2004. A review of surface ozone background levels and trends. Atmos. 
Environ. 38, 3431–3442. 

Wang, F.T., Zhang, K., Xue, J., Huang, L., Wang, Y.J., Chen, H., Wang, S.Y., Fu, J.S., 
Li, L., 2022a. Understanding regional background ozone by multiple methods: a case 
study in the Shandong Region, China, 2018–2020. J. Geophys. Res.-Atmos. 127. 

Wang, J., Feng, L., Palmer, P.I., Liu, Y., Fang, S., Bösch, H., O’Dell, C.W., Tang, X., 
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