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ABSTRACT: Despite emerging evidence on the health impacts of fine
particulate matter (PM2.5) from wildland fire smoke, the specific effects of
PM2.5 composition on health outcomes remain uncertain. We developed
a three-level, chemical transport model-based framework to estimate daily
full-coverage concentrations of smoke-derived carbonaceous PM2.5,
specifically organic carbon (OC) and elemental carbon (EC), at a 1 ×
1 km2 spatial resolution from 2002 to 2019 across the contiguous U.S.
(CONUS) and Southern Canada (SC). A 10-fold random cross-
validation confirmed robust performance, with daily R2 = 0.77 (OC)
and 0.80 (EC) in the smoke-off scenario and 0.67 (OC) and 0.71 (EC)
in the smoke-on scenario, and exceeded 0.90 at the monthly scale after
residual adjustment. Modeling results indicated that increases in wildland
fire smoke have offset approximately one-third of the improvements in
background air quality. In recent years, wildland fire smoke has become more frequent and carbonaceous PM2.5 concentrations have
intensified, especially in the Western CONUS and Southwestern Canada. Wildfire season is also starting earlier and lengthens
throughout the year, leading to more population being exposed. We estimated that long-term exposure to fire smoke carbonaceous
PM2.5 is responsible for approximately 7455 and 259 non-accidental deaths annually in the CONUS and SC, respectively, with
associated annual monetized damage of 68.3 billion USD for the CONUS and 1.9 billion CAD for SC. The Southeastern CONUS,
where prescribed fires are prevalent, contributed most to these health impacts and monetized damages. Our findings offer critical
insights to inform policy development and assess future health burdens associated with fire smoke exposure.
KEYWORDS: wildland fire, mortality, fine particulate matter, prescribed fire, PM2.5 speciation, United States, Canada

■ INTRODUCTION
Over the past half-century, wildland fire activity has
significantly increased in not only the U.S. but also other
temperate and high-latitude fire-prone ecosystems, including
those in Canada and Europe.1,2 Notably, human-induced
climate change was responsible for an additional 4.2 million
hectares of forest fire area between 1984 and 2015, compared
to the area expected to be burned under natural climate
variability alone.3 As a result, large-scale wildland fire events
have become more frequent and intense, and fire seasons have
lengthened in the contiguous U.S. (CONUS) in recent
decades. Previous research has indicated that wildland fire
smoke has contributed to nearly 25% of the ambient fine
particulate matter (PM2.5, particles with a diameter of less than
2.5 μm) across the U.S. in recent years, and up to 50% in
certain Western U.S. regions.4

One of the primary wildfire management strategies is
prescribed burning. Prescribed fires not only reduce the
biomass available for subsequent wildfires, but they also
support carbon sequestration, facilitate ecological resilience,
and play a critical role in restoring fire-adapted ecosystems that
have been degraded due to decades of fire exclusion.5,6 Over

65% of the prescribed burn areas are in the Southeastern U.S.7

This frequent application of prescribed fires has resulted in
elevated PM levels in the region.8 In the context of climate
change, the growing reliance on prescribed burning to control
wildfires has increased smoke emission from these burns,
which have emerged as a significant public health concern,
particularly in the Southeastern U.S.9,10 The National
Prescribed Fire Acts (116th and 118th Congress) emphasize
the importance of public health and safety risks associated with
the expanded use of prescribed fires. However, it states that
smoke from prescribed fires is generally less harmful and of
shorter duration compared to wildfire smoke, stating that it
exposes children to fewer adverse health effects.11 Such a
statement, however, is based on limited research, which may
lead to an underestimation of prescribed burning’s health risks.
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As global warming continues to escalate wildfire activity, the
negative impacts of smoke on air quality and public health are
likely to worsen in the future.12 Fire smoke contains
considerable amount of PM2.5, significantly deteriorating the
air quality in downwind communities that are tens to hundreds
of kilometers away.13 Smoke PM2.5 is characterized by
substantial concentrations of carbonaceous matter, including
organic carbon (OC) and elemental carbon (EC), which are
produced by the combustion and incomplete burning of
organic materials such as wood, leaves, and other vegetation.
This distinguishes fire smoke PM2.5 from typical ambient
PM2.5, which tends to present greater oxidative potential.

14−16

As a result, smoke PM2.5 with unique chemical profile may alter
the overall composition and toxicity of ambient PM2.5 in
regions impacted by fire smoke.
While numerous studies have linked exposure to PM2.5 with

various adverse health impacts, epidemiological research
linking exposure to fire smoke PM2.5 with adverse health
outcomes is still in its early stage.17−20 Long-term exposure to
smoke PM2.5 has been linked to all-cause mortality in the
CONUS, particularly among vulnerable populations such as
the elderly.21 It is estimated that 11 415 non-accidental deaths
per year in the CONUS can be attributed to smoke PM2.5, with
cardiovascular diseases contributing the most.21 Short-term
exposure to wildfire smoke PM2.5 has been associated with
increased risks of respiratory morbidity, mental health issues,
and excess mortality.22−25 However, evidence on the health
effects of different chemical components of smoke PM2.5
remains sparse. For example, OC has been identified to be
an important component influencing PM2.5 toxicity to several
reactions harming organic systems and a key contributor to all-
cause mortality.26−28 EC, due to its small size, can penetrate
deeply into the respiratory tract and serve as a transporter for
various toxic substances.29 Because OC and EC are the main
products of biomass burning, quantifying their concentrations
is critical for elucidating the toxicity profile of smoke PM2.5 and
informing health studies.
Research on the health effects of smoke PM2.5 has been

hindered due to the scarcity of long-term exposure data,
especially data with comprehensive spatial coverage and high
spatial-temporal resolution. Most epidemiological studies on
smoke PM have relied on local ground-based monitoring
stations, satellite images, uncalibrated chemical transport
model (CTM) simulations or simple classifications of smoke-
affected areas to investigate the health impacts of fire
smoke.30−35 These methods were either did not quantify
smoke-specific PM or based on coarse resolution smoke
estimates, potentially introducing exposure misclassification.
For instance, Kiser et al. classified smoke days via recorded
events from a local air quality management division to
investigate whether wildfire smoke modified the association
between PM exposure with asthma visits. A key limitation of
the study was the inability to isolate smoke-specific PM from
other sources, potentially underestimating smoke-related
health impacts.34 Liu et al. employed simulations of daily
wildfire smoke PM2.5 from the GOES-Chem CTM at a
solution of 0.5° × 0.65° to investigate risk of hospital
admissions.35 Although CTMs can incorporate emissions,
atmospheric chemistry, and meteorology to provide full spatial
and temporal coverage and allow for separation of smoke
PM2.5, the simulations has uncertainties from the input
emission inventories and lacked sufficient spatial resolution
for assess localized smoke exposure.36 Such limitations

underscore the need for more refined CTM-based models
that estimate smoke-specific PM2.5 at high spatiotemporal
resolution.
Emerging research has shown great promise to generate

long-term and high-resolution smoke PM2.5 concentrations by
calibrating CTM simulations. For instance, Cleland et al. tested
the model performance of predicting 1 × 1 km2 wildfire smoke
PM2.5 based on CTMs simulations and different combinations
of concentration data sets.37 The model that fused ground-
based observations, satellite aerosol optical depth (AOD)-
derived concentrations and CTMs simulations provided the
best estimate (R2 = 0.71) in fire-impacted regions, highlighting
the importance of integrating multiple data sets. Similarly,
Zhang et al. developed CMAQ-based models to estimate daily
1 × 1 km2 smoke PM2.5 total mass, which achieved strong
model performance with R2 of 0.75 and 0.68 in smoke-
impacted regions and non-smoke regions, respectively.38

Nevertheless, few studies have adopted CTM-based models
to estimate smoke PM2.5 speciation with high spatial and
temporal resolution. This is largely because CTM simulations
for PM2.5 speciation often face higher uncertainties compared
to those for total PM2.5 mass, demanding more advanced
calibration techniques.39,40 To address this challenge, a multi-
step modeling approach that progressively refines CTM-based
predictions by integrating ground-based measurements,
satellite retrievals, and auxiliary data sets is needed. One
promising example is the superlearner approach, a widely used
approach that systematically combines outputs from multiple
base learners and often outperforms any single model.41−43

Such a stepwise strategy is crucial for accurately capturing
smoke PM2.5 speciation, as each stage refines the calibration
and yields more reliable exposure estimates.
In this study, we developed a three-level, CTM-based

machine learning model framework to estimate daily
concentrations of fire smoke carbonaceous PM2.5, specifically
OC and EC, at 1 × 1 km2 spatial resolution from 2002 to 2019
with full coverage across the CONUS and Southern Canada
(SC). The three levels consist of (1) base models producing
initial predictions, (2) a super learner integrating those
outputs, and (3) a spatiotemporal residual adjustment based
on the generalized additive model. This framework integrated
information from CMAQ simulations of PM2.5 mass and
speciation, ground-based observations and multiple auxiliary
spatial and spatiotemporal data sets. This innovative approach
allows us to fill important research gaps described above,
namely, to differentiate exposure by specific carbonaceous
constituents of smoke PM2.5, and to estimate fire smoke-related
health burdens over the long term. By leveraging the high
spatial and temporal resolution of our model predictions, we
analyzed the spatiotemporal patterns in both the frequency of
smoke impact and the concentrations of carbonaceous PM2.5
from fire smoke. Given the regional difference in fire regimes,
meteorological conditions, and baseline air quality, we also
examined how smoke carbonaceous PM2.5 impacts vary by
climate region. Furthermore, we estimated the populations
exposed to fire smoke. Lastly, we investigated the impacts of
long-term exposure to fire smoke on mortality burden and
associated monetized damages.

■ MATERIALS AND METHODS
Study Domain and Period. Our study domain included

the CONUS and SC (Figure 1). The daily predictions were
developed at 1 × 1 km2 spatial resolution. In total, our
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modeling grid included 9 115 328 1 × 1 km2 grid cells for the
CONUS and 2 620 640 1 × 1 km2 grid cells for SC, from 2002
to 2019. The study domain was constraint by the EPA’s
standard Community Multiscale Air Quality (CMAQ) 12US1
modeling domain, which covers the entire CONUS and
extends into the SC included in our study. The study covers
the entire population of the CONUS and the majority of the
population in Canada (Figure S1). The CONUS exhibits
highly heterogeneous population densities, with densely
populated metropolitan areas located in the Northeast,
Southeast, and parts of the West, and more sparsely populated
regions in the central and western areas. In contrast, SC is
characterized by a mix of urban centers (e.g., Toronto,
Montreal, and Vancouver) and lower-density rural regions.

Ground-Based Carbonaceous PM2.5 Measurements.
The ground-based measurements of carbonaceous PM2.5 (i.e.,
OC and EC) in the CONUS were obtained from a variety of
sources, including the chemical speciation network (CSN)
from Environmental Protection Agency (EPA), the National
Park Service interagency monitoring of protected visual
environments (IMPROVE) network, and the Southeastern
Aerosol Research and Characterization Study (SEARCH)
network.44,45 For SC, ground-based observations were
provided by the National Air Pollution Surveillance (NAPS)
program.46 In total, 401 monitors operated during our study
period, with most stations operating for more than 5 years
(Figure 1). Extremely high observations (>99.98th percentile)
of PM2.5 OC and EC were excluded from the model training to
minimize the outliers (99.98th percentile of OC and EC: 34.75
μg/m3 and 7.40 μg/m3). PM2.5 OC and EC stations are often
colocated and collect samples synchronously every 3 days, with
similar number of stations and observations overtime (Table
S1). Our final data includes approximately 448 000 daily
measurements for OC or EC. Detailed summary statistics of
ground-based measurements for training data set are provided
in Tables S2 and S3.

Chemical Transport Model. The state-of-the-art CMAQ
(www.epa.gov/cmaq) modeling system estimates atmospheric
concentrations of numerous chemicals and aerosols, including
ozone (and its precursors), PM2.5, and deposition of harmful
chemical species.47 CMAQ is developed and maintained by the
U.S. Environmental Protection Agency (EPA), and it has been

widely used for assessing air pollution, including evaluating
policies and estimating impacts on human health.48−50 In this
study, we used CMAQ version 5.3.2 and the data sets from the
EPA’s air QUAlity TimE Series (EQUATES; www.epa.gov/
cmaq/equates) project.51 EQUATES is a multiyear air quality
modeling platform designed by U.S. EPA to support long-term
trend analysis and regulatory assessments. It provides both the
input data and simulation outputs necessary for running the
CMAQ model over long time periods. Specifically, the inputs
include meteorological fields such as temperature, pressure,
humidity, and wind speed derived from simulations using the
Weather Research and Forecasting (WRF) model version
4.1.1, and emissions from multiple sectors (e.g., vehicles, fires,
oil and gas industries, residential wood combustion, aircraft,
and shipping), which were developed using consistent methods
across years.
In this study, we leveraged two sets of daily CMAQ

simulations at 12 × 12 km2 spatial resolution for the period of
2002−2019: (1) the baseline CMAQ simulation results from
EQUATES, which includes all emission sources, and (2) a
sensitivity simulation conducted using the same configurations
(Table S4) and inputs, except by not including fire emissions.
Hereafter, these two sets of simulations are referred to as “fire-
inclusive” and “fire-exclusive”, respectively. Wildland fires and
prescribed fires in the “fire-inclusive” simulation were identified
by integrating fire emissions inventories from the NOAA
Hazard Mapping System (HMS), the Incident Status Summary
database, the Monitoring Trends in Burn Severity database,
and the Geospatial Multi-Agency Coordination system.52−54 In
addition, the simulation include cropland fires and grassland
fires. Emissions from four fire types are combined to quantify
the aggregated impact of fire smoke.

Classification of Smoke-Impacted Areas. To isolate the
specific contribution of fire smoke to PM2.5 OC and EC
concentrations, we classified the grid cells in the study domain
into two daily smoke scenarios: a background scenario without
fire smoke impact (“smoke-off”) and a fire smoke-impacted
scenario (“smoke-on”). All grid days were matched with the
fire-exclusive CMAQ simulations to establish baseline
conditions without smoke influence. Those grid days classified
as smoke-on were also matched spatially and temporally with
fire-inclusive CMAQ simulations. This allowed separate
modeling and prediction for both scenarios to quantify
smoke contributions at each smoke-on grid day by subtracting
smoke-off concentrations from smoke-on concentrations.
We first calculated the smoke contribution to PM2.5 mass by

subtracting fire-exclusive CMAQ simulations from the fire-
inclusive CMAQ simulations. The ratio of smoke PM2.5 mass
was then determined by dividing smoke contribution by the
fire-inclusive PM2.5 mass from CMAQ simulations, as follows:

=PM PM PM2.5smoke
CMAQ

2.5fire inclusive
CMAQ

2.5fire exclusive
CMAQ

(1)

=smoke PM ratio PM /PM2.5 2.5smoke
CMAQ

2.5fire inclusive
CMAQ

(2)

The smoke scenarios were defined based on the smoke PM2.5
mass ratio and the NOAA HMS smoke plume maps.52 These
maps are generated by trained satellite analysts who manually
integrate data from multiple satellite sensors to identify and
outline areas affected by smoke, which depict daily spatial
extent of smoke plumes originating from fires across North
America. On a given day, grid cells that either fell within the
HMS smoke plume polygon or had a smoke ratio greater than

Figure 1. Study domain and ground-based monitoring networks of
PM2.5 OC and EC.
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a predefined threshold were considered to be impacted by fire
smoke.
To determine this threshold, we conducted a sensitivity

analysis using smoke ratios ranging from 1 to 20%. A 3%
threshold was ultimately selected to define smoke-impacted
areas because it successfully covered most observed fire spots
across seasons during the study period (Figure S2). These fire
spots were obtained from the NOAA HMS which detects daily
locations of potential biomass burning locations (e.g., wildfires,
prescribed burns, and agricultural fires) using satellite imagery
from multiple sensors.52 Additionally, the classification yielded
acceptable correlations between CMAQ simulations and
ground-based observations (e.g., Correlation: 0.32−0.55 for
smoke-on grid days; Table S5), and maintained sufficient
sample sizes for training models under the smoke-on scenario.
Several factors help explain the moderate correlations

between CMAQ-simulated and monitored OC/EC. First,
CMAQ outputs represent 12 × 12 km2 grid cell-averages, so
local peaks and rural baselines are averaged in the CMAQ. On
the other hand, monitors sample at a single microenvironment,
which is often located in populated areas. Second, monitoring
networks obtain OC and EC by collecting a 24 h aerosol
sample on quartz filters and analyzing it thermally and
optically. The filter is weighed then progressively heated to
drive off organic compounds and then heated in an oxidizing
atmosphere to combust the remaining EC. Carbon released in
each stage is measured and reported as carbon mass. CMAQ
models EC as primary particles emitted from combustion
sources, whereas OC comprises those primary emissions plus
secondary organic aerosol produced through the model-
simulated oxidation of volatile precursors.47 Third, the
CMAQ inherits uncertainties from its input emission
inventories, while filter-based measurements introduce their
own uncertainties from sampling and analysis methods
employed, shipping, and blank/artifact estimation and
correction.44 These discrepancies underscore the importance
of integrating CMAQ simulations with auxiliary predictors to
achieve robust estimates.

Auxiliary Predictors. To enhance model performance and
predictive accuracy, we incorporated a wide range of auxiliary
predictors in model development. These predictors included
satellite-retrieved AOD, which measures the optical concen-
tration of airborne fine particles. Cloud coverage was included

because of its impact on AOD retrieval quality. Smoke plume
information, including duration and density, characterized
daily fire smoke impact. We also incorporated meteorological
variables (e.g., temperature, humidity, and wind speed) to
account for their role in pollutant transport and dispersion.
Vegetation indices such as NDVI and EVI, biogenic emissions,
and land cover types were used to represent fuel availability
and biogenic emission sources. Additional predictors such as
population density, road density, elevation, and human
footprint index served as proxies for human activity, traffic
emissions, and topological characteristics. Finally, spatial
coordinate and time trend terms were added to capture
variation not explained by other predictors. These variables
have been found to be important predictors in prior
studies.38,55−57

To ensure spatial consistency, all predictors at different
spatial resolutions were rescaled and aligned into the 1 × 1 km2
grid cells obtained from the Multi-Angle Implementation of
Atmospheric Correction (MAIAC) data set, which served as
the grid template for the MAIAC aerosol optical depth (AOD)
measurements.58 Daily ground-based measurements of PM2.5
OC and EC were assigned to their collocated grid cells.
Detailed descriptions of the data sources and process steps are
provided in section S1 of the Supporting Information.

Modeling Framework. After aggregating the raw measure-
ments for OC and EC, we applied the Synthetic Minority
Oversampling Technique (SMOTE) to oversample the
underrepresented high-concentration measurements, improv-
ing model learning and performance in capturing extreme
smoke pollution events.59 The enriched training data sets were
then classified into smoke-off and smoke-on scenarios. To
clarify, samples classified as smoke-on were excluded from
training the smoke-off models. Conversely, smoke-off models
produced predictions for every grid day, whereas smoke-on
models were only used for smoke-on grid days. For both PM2.5
OC and EC, and both smoke scenarios, we employed the
proposed Residual Adjusted Super Learner (RASL) (Figure 2),
which integrates the strengths of multiple modeling approaches
through a three-level modeling framework. At level 1, four base
machine learning models were trained using cross-validated
predictions and generated daily predictions. These predictions
were then incorporated using a meta-learner algorithm at level
2 to generate fused predictions.42 This ensemble approach

Figure 2. Modeling framework of the three-level residual adjusted super learner (RASL).
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takes advantage of the predictive ability across base learners,
which typically outperforms any single model. Finally, at level
3, generalized additive models (GAMs) were trained at the
monthly level to adjust the remaining spatiotemporal residuals
of the monthly averaged concentrations. This GAM step
enabled us to correct for smooth, spatially varying biases that
might be overlooked in level 1 and 2, thereby enhancing the
robustness and accuracy of our long-term estimates across the
entire 1 × 1 km2 grid from 2002 to 2019. In summary, RASL
not only leverages the ensemble strength of the super learner
but also addresses the spatiotemporal residuals, offering a
robust approach to model smoke carbonaceous PM2.5. Details
of the modeling framework are provided in section S2 of the
Supporting Information.

Model Performance Evaluation. We conducted a three-
stage cross-validation (CV) to evaluate the model performance
at each level of the RASL framework. Three types of CV were
employed: 10-fold random CV, 10-fold clustered spatial CV,
and leave-one-year-out temporal CV. The clustered spatial CV
better tests the model’s predictive ability when a large group of
monitoring networks is missing instead of a single monitor.60,61

Prediction accuracy was evaluated using three metrics: the
coefficient of determination (R2), root-mean-square error
(RMSE), and slope. To further evaluate the model at different
time scales, we averaged daily estimations into monthly and
annual values, allowing us to capture both long-term trends
and short-term fluctuations, important for long-term cohort
studies and short-term analyses. Details of the CV experiments
are provided in section S3 of the Supporting Information.
Ranked feature importance is also reported using impurity-
based (for random forest and extremely randomized trees) and
gain-based (for extreme gradient boosting and light gradient
boosting machine) methods.

Calculation of Mortality Burden and Monetized
Damage. We employed different methods in the CONUS
and SC to calculate the non-accidental mortality and
monetized damages attributable to fire smoke carbonaceous
PM2.5. For the CONUS, Ma et al. provided the monthly non-
accidental mortality rates across different concentration bins of
12-month averaged smoke PM2.5 in the CONUS.

21 The bins
were defined based on percentile ranges of the concentrations.
The monthly mortality rates were then multiplied by 12
months to estimate the annual mortality rate (Table S6). The
annual mortality rate, along with each year’s smoke
concentrations and population data, was used to estimate the
following year’s deaths. To reflect uncertainty in estimating
attributable mortality, we employed a Markov chain Monte
Carlo (MCMC) that varies the mortality rates while holding
exposure and population constant. Specifically, for each
concentration bin we generated 10 000 random draws
according to the published point estimate and 95% confidence
interval (CI). For each calendar year we report the ensemble
median and the 2.5th−97.5th percentiles as the point estimate
and 95% CI, respectively. Because Ma et al.’s study is specific
to smoke PM2.5 mass instead of speciation, we also performed
two additional sensitivity analyses in CONUS to demonstrate
the range of plausible mortality burdens. In the first sensitivity
analysis, we rescaled the smoke-derived carbonaceous PM2.5 to
represent different percentages (i.e., 50, 60, 70, 80, 90, and
95%) of the total smoke PM2.5 mass and repeated the MCMC
calculation with median values extracted. The second analysis
used PM2.5 composition-based hazard ratios for long-term
exposure to OC and EC reported by Hao et al’s.62 The details

of the second analysis are provided in section S4 of the
Supporting Information.
To assess the monetized damages associated with these

mortality estimates, we employed the Value of Statistical Life
(VSL), as provided by the U.S. Department of Health and
Human Services. VSLs reflect the monetary value that
individuals are willing to pay to reduce the risk of death,
thereby providing an economic perspective on mortality
burden. We based our estimates on the 2013 VSL value and
then adjusted it annually from 2003 to 2020 in accordance
with HHS guidelines (Table S16), to account for inflation and
changes in real income for the specific dollar year.63 The year-
specific VSL values were multiplied by the estimated mortality
attributable to fire smoke carbonaceous PM2.5 exposure in that
year to provide an estimate of annual monetized damages and
95% CI.
For SC, we applied the Air Quality Benefits Assessment

Tool (AQBAT) developed by Health Canada, which is
designed to estimate the human health impacts and economic
valuation of changes in Canada’s ambient air quality.64

AQBAT is a Microsoft Excel-based tool that allows users to
define, run, review, and save inputs and outputs for specific air
quality scenarios. It operates using data from 293 Census
Divisions (CDs), based on the 2011 Canadian Census
geography defined by Statistics Canada. AQBAT quantifies
attributable morbidity or mortality from changes in air
pollution concentration based on its internal population data,
incidence rates, and concentration−response functions, which
are derived from individual study or meta-analyses. For our
study, we input the modeled annual average concentration of
smoke carbonaceous PM2.5 as the change in PM2.5 concen-
tration for each CD. AQBAT then applied the CRF for all-
cause mortality due to chronic exposure from Crouse et al. to
estimate attributable deaths, which found HRs of 1.10 (95%
CI: 1.05, 1.15) for each 10 μg/m3 increase in concentrations of
PM2.5.

65 We then extracted the mean attributable deaths along
with AQBAT’s built-in 2.5th and 97.5th percentiles estimates
as the 95% CI. Additionally, AQBAT estimates the economic
value of health impacts using the Canadian VSL provided by
the Canada Policy Research Initiative (Table S17).66 Differ-
ence between the Canadian and U.S. VSL estimates is due to
many factors, including currency year, purchasing power parity,
and relative weighting of individual primary valuation studies.
Annual monetized damages were calculated by multiplying the
estimated attributable mortality by the corresponding VSL
values.

■ RESULTS
Model Performance. The CV results revealed strong

model performance (Tables S7−S12). For daily level
predictions, smoke-off models showed higher accuracy, with
random CV R2 values above 0.75 for base learners and 0.77 for
meta-learners. Meta-learners for EC achieved average random
CV R2 values of 0.80 in smoke-off and 0.71 in smoke-on
scenarios, while OC performance dropped in smoke-on with a
reduced R2 of 0.67 and increased RMSE of 1.20 μg/m3. Spatial
CV showed low prediction errors for OC and EC in smoke-off
(Figure S3), with RMSEs below 0.8 and 0.2 μg/m3,
respectively. In contrast, smoke-on scenarios exhibited
relatively higher RMSEs, especially in areas prone to fire
smoke. For temporal CV, R2 values were consistently higher
for smoke-off scenarios (Figure S4), ranging between 0.65 and
0.85. In smoke-on scenarios, OC and EC displayed fluctuating
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R2 values between 0.58 and 0.65, with notable declines in 2002.
At monthly and annual levels, model performance improved
significantly (Tables S7−S12). Adjustments to residuals
through GAMs further enhanced accuracy (Table S13), with
random CV R2 values surpassing 0.91 for monthly and 0.97 for
annual predictions. Most overestimations and underestima-
tions observed at the daily level were reduced by averaging at
the monthly level (Figure S5). Overall, the RASL model
demonstrates reliable daily predictions across various CV
experiments and further improvements in adjusting the long-
term prediction residuals. Feature importance analysis (Figure
S6) indicated CMAQ simulations of carbonaceous PM2.5 were
primary predictors, with MAIAC AOD, urbanization factors,
smoke plume density and duration, meteorological factors, and
spatial and temporal characteristics also influential. Some land
use types (i.e., shrubland and grassland) show higher
importance in XGBoost models, which potentially play
important roles in certain regions such as Texas where
shrubland is the major vegetation type. These results illustrated
the necessity of the meta-learner, which integrates the
complementary strengths of the individual base learners in
capturing influential predictors.

Spatial and Temporal Patterns of Smoke Carbona-
ceous PM2.5. Figure S7 illustrates the average number of
smoke days per year across our study domain. The central-
south (i.e., Missouri, Arkansas, and Oklahoma) and south-
eastern (i.e., Alabama, Georgia, and Florida) regions of the
CONUS exhibited the highest average number of smoke days
(200+ days per year). The Western CONUS (i.e., California,
Oregon, Idaho, and Montana), North-Central CONUS (i.e.,
North Dakota, South Dakota, and Minnesota) and adjacent

areas in SC such as British Columbia also experienced a
significant number of smoke days (∼150 days), though the
sources of smoke in these regions differ. In the Western
CONUS and SC, the primary source of smoke is wildfires.
Conversely, in the central-south and southeastern regions of
the CONUS, prescribed fires are the main source of smoke.67

The northeastern regions of the study domain are less
frequently impacted by smoke (∼100 days) but can still
experience significant smoke pollution from long-range trans-
port.68,69

We summarized the background, total, and smoke-specific
concentrations of PM2.5 OC and EC across different time
scales and climate regions in Figure S8. From 2002 to 2019,
both the CONUS and SC experienced a declining trend in
background carbonaceous PM2.5, with annual concentrations
falling below 0.95 μg/m3 for OC and 0.20 μg/m3 for EC by
2019. When comparing the background carbonaceous PM2.5
between the periods 2002−2010 and 2011−2019, improve-
ments in annual background PM2.5 were observed, with
reductions of 0.27 μg/m3 for the CONUS and 0.17 μg/m3
for SC after 2011. The CONUS climate regions of Southeast,
South, Central, and Northeast exhibited higher background
concentrations and more significant reductions over the years
(Figure 3). Additionally, urban areas displayed higher
background concentrations of carbonaceous PM2.5 (Figure
S9), with long-term average concentrations reaching approx-
imately 2 μg/m3 for OC and 1 μg/m3 for EC. Elevated
background PM2.5 OC levels were also common in many rural
and forested areas of the South, Central and Southeast
CONUS climate regions, while high levels of PM2.5 EC were
mostly concentrated in urban centers across the study domain.

Figure 3. Annual average concentration of background and smoke PM2.5 OC and EC in the CONUS and SC, categorized by climate regions and
spanning the study period from 2002 to 2019.
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Considering the impacts of fire smoke, we observed a
distinct contribution of smoke PM2.5 OC, whereas the
contribution of smoke PM2.5 EC was smaller and showed
less fluctuation over the years. The mean annual concentration
of smoke PM2.5 OC was 0.22 μg/m3 for the CONUS and 0.14
μg/m3 for SC, while smoke EC concentrations were 0.08 μg/
m3 for the CONUS and 0.05 μg/m3 for SC. Combining smoke
PM2.5 OC and EC, smoke carbonaceous PM2.5 accounted for
19 and 16% of the total concentrations in the CONUS and SC,
respectively. At the monthly level, smoke carbonaceous PM2.5
exhibited a notable increase during the peak months of wildfire
season (July−November) (Figure S10), with average monthly
concentrations rising to 2.38 μg/m3 for the CONUS and 2.60
μg/m3 for SC, accounting for 58 and 57% of total
concentrations, respectively.
The Western and Southern CONUS climate regions (i.e.,

Northwest, West, West North Central, South, and Southeast)
and the Southwestern Canada experienced more fire smoke
impacts, including wildland fire and prescribed fire, resulting in
increased smoke carbonaceous PM2.5 at both regional and
national scales (Figure 3). Additionally, the annual mean
concentrations of smoke carbonaceous PM2.5 increased by 0.08

μg/m3 for the CONUS and 0.05 μg/m3 for SC before and after
2011. This intensifying trend in fire smoke has offset nearly
one-third of the improvements in background concentrations.
Megafire years of 2012, 2015, 2017, and 2018 experienced
significantly higher concentrations of both smoke PM2.5 OC
and EC at the monthly and annual levels.
Our 1 × 1 km2 prediction maps revealed different spatial

distributions between long-term smoke OC and EC concen-
trations (Figure S9). High smoke OC concentrations (>0.50
μg/m3) were primarily observed in rural areas of the Western
CONUS and SC, and were sporadically distributed in the
Southeastern CONUS. Elevated EC concentrations (>0.15
μg/m3) were often collocated with high smoke OC, with the
Southeastern CONUS, particularly Georgia, Florida, Mis-
sissippi, and Texas, exhibiting higher smoke EC concentrations
(>0.20 μg/m3). Long-term average concentrations of smoke
carbonaceous PM2.5 were highest in the Western CONUS and
Southwestern Canada, particularly in California, Idaho, and
Montana (Figure 4). The Southeastern CONUS also
experienced comparable concentrations of smoke carbona-
ceous PM2.5, with urban centers such as Charlotte and Atlanta,
and their surrounding areas, showing higher exposure levels

Figure 4. Long-term average annual concentration of smoke carbonaceous PM2.5 from 2002 to 2019, with major urban centers (located at red
points) zoomed in for detailed visualization.
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than urban areas in other parts of the study domain (Figure 4).
During megafire years (2012, 2015, 2017, and 2018), elevated
smoke carbonaceous PM2.5 was concentrated in rural regions
of the Western CONUS, as well as urban centers such as Los
Angeles, San Francisco, Seattle and Vancouver, as captured in
the annual prediction maps (Figures S11 and S12). However,
long-term averages inevitably mask the short-lived, often
distinctly shaped smoke plumes that represent individual fire
events. To demonstrate the model’s ability in capturing
localized event-scale peaks, we mapped smoke carbonaceous
PM2.5 for an extreme smoke day on August 23, 2018 (Figure
S13), when extensive wildfires in western Canada and the
western CONUS affected both coastal cities nearby and distant
downwind cities.70 The western cities (i.e., San Francisco,
Seattle, and Vancouver) displayed consistent extreme pollution
level, reflecting the dense, freshly emitted plume. After long-
range transport, the plume reached southeastern cities (i.e.,
Charlotte and Atlanta) in a considerably diluted state,
producing a broad but moderate concentration increase. Los
Angeles, located near fire sources but did not experience direct
and strong smoke impacts, showed clear intraurban variability,
potentially due to the topography and landcover heterogeneity.

Increasing Impact of Wildland Fire Smoke on Air
Quality and Population Exposure. We evaluated the
populations affected by heavy fire smoke in the CONUS and
SC. A “heavy fire smoke grid day” was defined as a grid day
when the total carbonaceous PM2.5 concentration exceeded 1
μg/m3 and the smoke carbonaceous PM2.5 constituted more
than 50% of the total concentration. We compared the
cumulative daily populations affected by heavy fire smoke
during the periods 2002−2010, 2011−2019, and specifically
the five years from 2015−2019 (Figure 5). Our analysis
revealed a clear increasing trend in population exposed over
the years, corresponding to the broadening of wildfire smoke
impacts. During 2002−2010, there was an average of 467
million person days of exposure to heavy fire smoke prior to
July first, while this number rose by 70% to 793 million person
days during 2011−2019. By year’s end, cumulative exposure
increased from 986 million person days in 2002−2010 to 1.8
billion person days in 2011−2019, representing an 83%

increase. To account for the influence of population growth on
these trends, we also calculated the annual exposure days per
capita. On average, individuals experienced 3.0 days of heavy
smoke exposure per year in 2002−2010, which increased to 5.1
days per year in 2011−2019. The megafire years of 2017 and
2018 had particularly severe impacts, with cumulative exposure
exceeding 3 billion person days (Figure 5), equivalent to 9.0
exposure days per person per year. Separate figures for
cumulative person days of exposure to heavy fire smoke in the
CONUS and SC across years are provided in Figure S14.

Excess Mortality Due to Smoke Exposure. The annual
non-accidental mortality rate and total deaths attributable to
smoke carbonaceous PM2.5 from 2003 to 2020 are mapped at
the county level in the CONUS and the census division (CD)
level in SC (Figure S15). Consistent with the spatial
distribution of high smoke carbonaceous PM2.5 concentrations
in the Western and Southeastern CONUS and Southwestern
Canada, counties and CDs in these areas exhibited elevated
annual mortality rates, exceeding 3 deaths per 100 000 people
(Figure S15A). The CONUS counties with higher annual
death counts (>3 deaths per year) were generally located in
California, Oregon, Washington, Florida, Georgia, South
Carolina, North Carolina, and Texas (Figure S15B), areas
characterized by high population density, frequent smoke
impact and elevated smoke carbonaceous PM2.5. On average,
7455 (95% CI: 6058, 8852) non-accidental deaths per year in
the CONUS were attributable to long-term exposure to fire
smoke carbonaceous PM2.5 (Table S14), with the southeastern
CONUS contributing 4698 (95% CI: 3859, 5550) deaths per
year (63.0%), and the western region contributing 1,567 (95%
CI: 1254, 1881) deaths per year (21.0%).
For sensitivity analyses, when smoke carbonaceous PM2.5

concentrations were rescaled to represent 50−95% of the total
smoke PM2.5 mass, the mean annual deaths in the CONUS
ranged from 7751 (95% assumption, Table S15) to 11 160
(50% assumption). During the megafire year of 2018, the
corresponding interval was 12 059−15 117 deaths. The second
sensitivity analysis yielded a higher estimate of 24 671 annual
deaths (Table S15) on average, with a maximum of 32 292
deaths in 2018.

Figure 5. Cumulative person days exposed to heavy fire smoke in the CONUS and SC (unit: million person day). Note: A person day is defined as
one individual exposed to heavy fire smoke for 1 day.
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In SC, higher annual deaths were observed in urban areas of
British Columbia, Ontario, and Quebec (Figure S15B), with an
average of 259 (95% CI: 136, 383) non-accidental deaths per
year (Table S17). Annual total deaths in the southeastern
region remained relatively stable over the study period (Figure
6), whereas deaths in the western and northeastern regions, as
well as in SC, fluctuated significantly in response to variations
in wildfire intensity.
The average monetized damages associated with these

mortality estimates were approximately 68.3 (95% CI: 31.9,
104.0) billion USD per year for the CONUS and 1.9 (95% CI:
1.0, 2.8) billion CAD per year for SC (Tables S16 and S17).
The southeastern region contributed 43.0 (95% CI: 20.0, 65.4)
billion USD annually, and the western region contributed 14.2
(95% CI: 6.6, 21.6) billion USD. In 2018 and 2019, both
mortality and monetized damages nearly doubled compared to
the average levels, leading to monetized damages exceeding
120 billion USD for the CONUS and 4.6 billion CAD for SC
(Figure 6).

■ DISCUSSION
To the best of our knowledge, this is the first study to model
the full-coverage concentration of fire smoke-derived carbona-

ceous PM2.5 with high spatial and temporal resolution across
both the CONUS and SC. We developed a three-level RASL
framework to estimate both daily and long-term smoke
carbonaceous PM2.5 from 2002 to 2019. Our analysis identified
frequent smoke impact and elevated concentrations of smoke-
derived carbonaceous PM2.5 in the Western and Southeastern
CONUS, as well as in SC. Over the past decade, wildfire
seasons have started earlier, lasted longer, and wildfire activity
has intensified, resulting in increased population exposure to
wildfire smoke. Specifically, population exposure to heavy
smoke increased from an average of 3.0 days per year in 2002−
2010 to 5.1 days per year in 2011−2019, driven largely by
climate change which has created more favorable conditions
for wildfires.71−76 We estimated that long-term exposure to
smoke carbonaceous PM2.5 resulted in an average of 7455 and
259 non-accidental deaths per year in the CONUS and SC,
respectively, with the Southeastern CONUS contributing the
most deaths. Recent megafire years (e.g., 2017 and 2018)
exhibited extremely high concentrations of carbonaceous PM2.5
and corresponding health burdens. Without significant
mitigation efforts, future climate models predict an alarming
increase in wildfire frequency and severity, which poses further
risks to ecosystems, air quality, and public health.77,78

Figure 6. Annual total deaths attributable to fire smoke carbonaceous PM2.5 in the CONUS (subplot A) and SC (subplot B). Note: Climate
regions in the CONUS were grouped into three major regions based on the U.S. National Prescribed Fire Use Survey Report and our analysis of
smoke-impacted areas (see Figure S7). These regions are defined as follows: the western region (i.e., climate regions: West, Southwest, Northwest,
and West North Central), the southeastern region (i.e., climate regions: Southeast, Central, and South), and the northeastern region (i.e., climate
regions: Northeast and East North Central). The annual total monetized damages for the CONUS and SC are labeled at the top of each column
(units: billion USD for the CONUS and billion CAD for SC).
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The long-term concentration of PM2.5 mass from fire smoke
in the CONUS and Canada has been examined in previous
literature. Our findings on the spatial and temporal patterns of
smoke carbonaceous PM2.5 are consistent with these prior
studies. For example, Childs et al. estimated smoke PM2.5 over
the CONUS at a 10 km resolution and observed increased
smoke pollution and smoke-impacted days over the past
decade, especially in the Western U.S. and in the years 2017
and 2018.56 Alpizar et al. conducted a multiyear analysis of the
FireWork outputs from May to September to quantify wildfire
contribution to total PM2.5 across North America.

79 FireWork
is an online meteorology-chemistry model developed by
Environment and Climate Change Canada, providing near-
real-time forecasts of biomass burning PM2.5 across North
America.80 The findings showed that most wildfire events were
concentrated in the Western CONUS, as well as in Western,
Northern, and Central Canada. While previous studies have
offered valuable insights into wildfire smoke PM2.5, our
approach distinguishes between smoke PM2.5 OC and EC,
allowing further study on smoke composition and potential
toxicity that may result in different health impacts. Moreover,
our daily estimates at 1 × 1 km2 resolution better captures local
hotspots and intraurban gradients during extreme-smoke days
and allow for more precise long-term estimates, which is
essential for reducing exposure misclassification in further
analyses.
Additionally, our results indicated a significant intensifica-

tion of wildfires with higher concentrations of smoke
carbonaceous PM2.5 across our study period, which has offset
nearly one-third of the improvements in background air quality
across the CONUS and SC, largely due to efforts such as the
Clean Air Act.81 This intensifying trend in wildfire smoke
stagnated or even reversed the declining trend of background
concentrations in most regions. Our findings align with existing
literature on smoke PM2.5 mass. Burke et al. reported that areas
affected by wildfire smoke have doubled over the past two
decades in the CONUS, and that wildfire smoke has influenced
the average annual PM2.5 trend in 41 out of 48 CONUS States
since 2016.4,82 Notably, smoke has offset approximately 25% of
the overall improvement in air quality. As studies of Canadian
wildfire-smoke impacts remain relatively scarce, our findings
add to this body of literature by characterizing smoke PM2.5
patterns in SC and transboundary transport. We observed that
the western provinces can be a major source region for
downwind smoke, which also affects air quality in the eastern
provinces and the North-Central and Northeastern U.S. In
recent decades, wildfires are becoming both more common
and more destructive in Canada, extending from British
Columbia and Alberta to the Atlantic region.83,84 The Canada’s
record-breaking wildfires in 2023 demonstrated that these
plumes can cross the North American continent and even the
Atlantic Ocean.85 Carter et al. showed that boreal fire
emissions propagated throughout North America, influencing
PM2.5 as far south as the U.S. Midwest and Atlantic seaboard.

86

Such patterns highlight how the entire North American
continent is interconnected by large-scale fire activity and
regional meteorology. Future research that encompassing
Alaska, Northern Canada, and Mexico with high spatiotempo-
ral resolution is needed to achieve a more comprehensive
understanding of the wildfire smoke activity across North
America.
Prescribed fires are widely recognized as one of the most

effective ways to prevent potential wildfires and sustain

biodiversity in all regions beyond the Southeastern
CONUS.87−89 Our study revealed lower concentrations of
smoke carbonaceous PM2.5 in the Southeastern CONUS
during megafire years compared to the Western CONUS.
However, our analysis also indicates that prescribed fires do
not necessarily translate into better air quality. They instead
lead to consistent smoke pollution with elevated carbonaceous
PM2.5 concentration over time that cause adverse health effects
from long-term exposure, which has not been extensively
discussed in prior fire smoke modeling studies or government
data sets. In the Southeastern CONUS region, where
prescribed fires are the primary sources of smoke, we estimated
4702 attributable deaths per year, which is higher than the
combined deaths in the Western CONUS (1,568 deaths per
year) and Northeastern CONUS (1192 deaths per year)
regions. Several factors contribute to this outcome. First, unlike
the Western U.S., where wildfires occur sporadically but at
high intensity, the Southeastern CONUS experiences regular
smoke pollution from frequent prescribed fires. Our results
indicated that annual regional average concentrations of smoke
carbonaceous PM2.5 in the Southeast CONUS are comparable
to those in the Western CONUS (∼0.4 μg/m3). While
prescribed fires effectively reduce risks of wildfires, they also
result in frequent and localized smoke pollution in the
Southeastern CONUS, where prescribed burns are conducted
throughout the year.67 Second, prescribed fire smoke
frequently affects densely populated urban and suburban
areas in the Southeast CONUS, such as Atlanta and Charlotte,
even though the fires are smaller and controlled.67 In contrast,
wildfires in the Western CONUS typically occur in more
remote, forested areas, such as the Cascades and Rocky
Mountains. While wildfire smoke can travel long distances to
urban centers like Los Angeles, San Francisco, and even the
Northeastern CONUS, the primary impact is often concen-
trated in less densely populated areas. Third, residents of
Southeastern states such as Georgia and Florida are more
accustomed to prescribed fires.90 Engebretson et al. reported
that Southern state residents demonstrate significantly higher
tolerance of potential health impacts from prescribed fires
compared to those in Western states.91 While this acceptance
reduces social barriers to the use of prescribed fires, it also
lowers public vigilance regarding exposure to fire smoke
pollutants. In contrast, the perception of wildfire risk in the
Western U.S. has been heightened by the prevalence of
megafires and media coverage, leading to a higher public
awareness of the dangers posed by wildfire smoke and harm-
reduction behaviors.
The average monetized damages associated with attributable

deaths in the Southeastern U.S. is 43.0 billion USD per year,
and this cost for the CONUS has exceeded 120 billion USD in
recent megafire years. In contrast, the U.S. allocated $1.73
billion to wildland fire management in 2024, with $214.5
million dedicated to fuels management.92 Considerable
evidence in the scientific literature supports prescribed fire as
a cost-effective method for mitigating wildfire risk and reducing
carbon emissions.93−95 However, most of these studies
overlook the significant health impacts associated with smoke
exposure from prescribed fire, which can be transported to
nearby populated areas. When considering health-related costs,
the cost-effectiveness of prescribed burns is called into
question, as these fires can cause damage over 200 times
greater than the budget. To better inform policy, it is crucial to
develop a more accurate and comprehensive cost-benefit
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assessment for prescribed burns by incorporating health-
related monetized damages from smoke exposure. Addition-
ally, policies should prioritize minimizing human smoke
exposure by improving monitoring networks of both PM2.5
mass and carbonaceous components and preparing commun-
ities for potential health impacts. Enhancing communication
strategies to warn residents and provide resources, such as air
quality alerts and protective equipment, should be an essential
component of these policies. Beyond policy improvements, a
more sophisticated prescribed fire management system is
necessary, one that considers the conditions of each fire,
including risk factors such as weather and proximity to
populations, and the long-term benefits of prescribed burns in
limiting wildfires impacts.96 Achieving this balance between
prescribed fire and public health is essential to ensure that
prescribed burns remain a valuable tool for ecosystem health
and wildfire prevention.
Our study has several implications. First, it provides a high-

resolution fire smoke product with full coverage for the
CONUS and SC, offering insights into the occurrence and
distribution of fire smoke impacts, and quantitative estimates
of background and smoke carbonaceous PM2.5 concentrations.
The comprehensive spatial and temporal coverage of our
predictions enables future research on the health and
environmental impacts of exposure to altered PM2.5
composition by fire smoke. Second, our findings suggested
that wildland fires have intensified over the past decade,
leading to an increase in deaths associated with long-term
exposure to smoke carbonaceous PM2.5. Finally, shortcomings
were identified in the current prescribed fire permit databases
because some states in the Southeastern U.S. (e.g., Texas,
Arkansas, and Missouri) do not require prescribed burn
permits and instead rely on voluntary reporting, resulting in
incomplete records and potential underestimation of pre-
scribed fire activity.67 By combining the prescribed fire permit
databases with our study’s high-resolution smoke predictions,
future efforts could better track prescribed fire activities in
terms of locations, durations, sizes and transmissions. As
climate change continues to challenge wildfire risk mitigation
and biodiversity conservation, our study could inform the
incorporation of potential health impacts in the cost-benefit
analyses of prescribed fire policies and management tools.
Several limitations of our study should be noted. First, the

level 3 monthly GAM residual adjustment relies on
information from ground-based monitors. The corrective
performance is constrained in unpopulated regions with sparse
monitoring network, particularly the Central U.S. and
Northern Canada. Expanding monitoring coverage in rural
areas would help refine the model and better reflect the impact
of fire smoke. Second, there is currently no research specifically
investigating the mortality attributable to smoke carbonaceous
PM2.5. As a result, our study relies on mortality risk estimates
based on total smoke PM2.5. Because OC and EC constitute
only a fraction of total smoke PM2.5, their concentrations are
systematically lower and assigned to lower concentration bins
specified by Ma et al. The misclassification, together with the
possibility that carbonaceous species possess greater toxicity
than total smoke PM2.5, may lead to an underestimation of
non-accidental deaths and monetized damages attributable to
smoke carbonaceous PM2.5. Our sensitivity analyses illustrated
this possibility. The upper bound estimate was approximate
8000−11 000 annual deaths if considering different carbona-
ceous fractions of total smoke, while the estimate was

substantially higher (∼25 000) when coefficients from PM2.5
speciation-based epidemiological study were applied. Future
research focusing on the mortality risk associated with specific
components of smoke PM2.5 is needed to more accurately
estimate the impact of carbonaceous PM2.5 from fire smoke.
Third, the annual smoke-mortality relationships for both the
CONUS and SC applied in our study may not be entirely
applicable to the 2020 baseline mortality rate, which was
impacted by the COVID pandemic. Fourth, our modeling
domain excludes Alaska and the northern Canadian territories,
where boreal wildfires are frequent and intense.97 By omitting
these high-latitude source regions we likely underestimate both
the magnitude and spatial transport of transboundary smoke
transport.
In conclusion, our study highlights the growing impact of

fire smoke carbonaceous PM2.5 and its adverse effects on public
health across the CONUS and SC. With wildfires intensifying
and becoming more frequent due to climate change, our
findings underscore the urgent need for comprehensive
prescribed fire management strategies that balance ecological
benefits with the reduction of smoke-related health risks. This
work provides a valuable foundation for future research and
policymaking to address the dual challenges of wildfire
prevention and public health protection in an increasingly
fire-prone environment.
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(31) Azevedo, J. M.; Gonçalves, F. L. T.; de Fátima Andrade, M.
Long-range ozone transport and its impact on respiratory and
cardiovascular health in the north of Portugal. International Journal of
Biometeorology 2011, 55 (2), 187−202.
(32) Marlier, M. E.; DeFries, R. S.; Voulgarakis, A.; Kinney, P. L.;
Randerson, J. T.; Shindell, D. T.; Chen, Y.; Faluvegi, G. El Niño and
health risks from landscape fire emissions in southeast Asia. Nature
Climate Change 2013, 3 (2), 131−136.
(33) Reid, C. E.; Brauer, M.; Johnston, F. H.; Jerrett, M.; Balmes, J.
R.; Elliott, C. T. Critical Review of Health Impacts of Wildfire Smoke
Exposure. Environ. Health Perspect. 2016, 124 (9), 1334−1343.
(34) Kiser, D.; Metcalf, W. J.; Elhanan, G.; Schnieder, B.; Schlauch,
K.; Joros, A.; Petersen, C.; Grzymski, J. Particulate matter and
emergency visits for asthma: a time-series study of their association in
the presence and absence of wildfire smoke in Reno, Nevada, 2013−
2018. Environmental Health 2020, 19 (1), 92.
(35) Liu, J. C.; Wilson, A.; Mickley, L. J.; Dominici, F.; Ebisu, K.;
Wang, Y.; Sulprizio, M. P.; Peng, R. D.; Yue, X.; Son, J.-Y.; Anderson,
G. B.; Bell, M. L. Wildfire-specific fine particulate matter and risk of
hospital admissions in urban and rural counties. Epidemiology 2017,
28 (1), 77.
(36) Frohn, L. M.; Geels, C.; Andersen, C.; Andersson, C.; Bennet,
C.; Christensen, J. H.; Im, U.; Karvosenoja, N.; Kindler, P. A.;
Kukkonen, J.; Lopez-Aparicio, S.; Nielsen, O.-K.; Palamarchuk, Y.;
Paunu, V.-V.; Plejdrup, M. S.; Segersson, D.; Sofiev, M.; Brandt, J.
Evaluation of multidecadal high-resolution atmospheric chemistry-
transport modelling for exposure assessments in the continental
Nordic countries. Atmos. Environ. 2022, 290, 119334.
(37) Cleland, S. E.; West, J. J.; Jia, Y.; Reid, S.; Raffuse, S.; O’Neill,
S.; Serre, M. L. Estimating wildfire smoke concentrations during the
October 2017 California fires through BME space/time data fusion of
observed, modeled, and satellite-derived PM2.5. Environ. Sci. Technol.
2020, 54 (21), 13439−13447.
(38) Zhang, D.; Wang, W.; Xi, Y.; Bi, J.; Hang, Y.; Zhu, Q.; Pu, Q.;
Chang, H.; Liu, Y. Wildland Fires Worsened Population Exposure to
PM2.5 Pollution in the Contiguous United States. Environ. Sci. Technol.
2023, 57 (48), 19990−19998.
(39) Li, Y.; Tong, D.; Ma, S.; Zhang, X.; Kondragunta, S.; Li, F.;
Saylor, R. Dominance of wildfires impact on air quality exceedances
during the 2020 record-breaking wildfire season in the United States.
Geophys. Res. Lett. 2021, 48 (21), No. e2021GL094908.

(40) Pan, X.; Ichoku, C.; Chin, M.; Bian, H.; Darmenov, A.; Colarco,
P.; Ellison, L.; Kucsera, T.; da Silva, A.; Wang, J.; Oda, T.; Cui, G. Six
global biomass burning emission datasets: intercomparison and
application in one global aerosol model. Atmospheric Chemistry and
Physics 2020, 20 (2), 969−994.
(41) Jin, Z.; Pu, Q.; Janechek, N.; Zhang, H.; Wang, J.; Chang, H.;
Liu, Y. A MAIA-like modeling framework to estimate PM2.5 mass and
speciation concentrations with uncertainty. Remote Sensing of
Environment 2024, 303, 113995.
(42) Van der Laan, M. J.; Polley, E. C.; Hubbard, A. E. Super learner.

Statistical applications in genetics and molecular biology 2007, 6 (1), 25.
(43) Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.;
Sabath, M. B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; Wang, Y.;
Mickley, L. J.; Schwartz, J. An ensemble-based model of PM2.5
concentration across the contiguous United States with high
spatiotemporal resolution. Environ. Int. 2019, 130, 104909.
(44) Solomon, P. A.; Crumpler, D.; Flanagan, J. B.; Jayanty, R.;
Rickman, E. E.; McDade, C. E. US national PM2.5 chemical speciation
monitoring networks�CSN and IMPROVE: description of networks.
J. Air Waste Manage. Assoc. 2014, 64 (12), 1410−1438.
(45) Hansen, D. A.; Edgerton, E. S.; Hartsell, B. E.; Jansen, J. J.;
Kandasamy, N.; Hidy, G. M.; Blanchard, C. L. The southeastern
aerosol research and characterization study: Part 1�Overview. J. Air
Waste Manage. Assoc. 2003, 53 (12), 1460−1471.
(46) Dabek-Zlotorzynska, E.; Dann, T. F.; Martinelango, P. K.; Celo,
V.; Brook, J. R.; Mathieu, D.; Ding, L.; Austin, C. C. Canadian
National Air Pollution Surveillance (NAPS) PM2.5 speciation
program: Methodology and PM2.5 chemical composition for the
years 2003−2008. Atmos. Environ. 2011, 45 (3), 673−686.
(47) Appel, K. W.; Bash, J. O.; Fahey, K. M.; Foley, K. M.; Gilliam,
R. C.; Hogrefe, C.; Hutzell, W. T.; Kang, D.; Mathur, R.; Murphy, B.
N.; Napelenok, S. L.; Nolte, C. G.; Pleim, J. E.; Pouliot, G. A.; Pye, H.
O. T.; Ran, L.; Roselle, S. J.; Sarwar, G.; Schwede, D. B.; Sidi, F. I.;
Spero, T. L.; Wong, D. C. The Community Multiscale Air Quality
(CMAQ) model versions 5.3 and 5.3.1: system updates and
evaluation. Geosci. Model Dev. 2021, 14 (5), 2867−2897.
(48) Wang, L.; Wei, Z.; Wei, W.; Fu, J. S.; Meng, C.; Ma, S. Source
apportionment of PM2.5 in top polluted cities in Hebei, China using
the CMAQ model. Atmos. Environ. 2015, 122, 723−736.
(49) Thongthammachart, T.; Araki, S.; Shimadera, H.; Eto, S.;
Matsuo, T.; Kondo, A. An integrated model combining random
forests and WRF/CMAQ model for high accuracy spatiotemporal
PM2.5 predictions in the Kansai region of Japan. Atmos. Environ. 2021,
262, 118620.
(50) Zhang, Q.; Xue, D.; Liu, X.; Gong, X.; Gao, H. Process analysis
of PM2.5 pollution events in a coastal city of China using CMAQ.
Journal of Environmental Sciences 2019, 79, 225−238.
(51) U.S. EPA Office of Research and Development. CMAQ. 5.3.2;
U.S. EPA Office of Research and Development: Washington, D.C.,
2020.
(52) McNamara, D.; Stephens, G.; Ruminski, M.; Kasheta, T. The
Hazard Mapping System (HMS)-NOAA multi-sensor fire and smoke
detection program using environmental satellites. Proceedings of the
13th Conference on Satellite Meteorology and Oceanography; Norfolk,
VA, Sept 20−23, 2004.
(53) Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.;
Howard, S. A project for monitoring trends in burn severity. Fire
ecology 2007, 3, 3−21.
(54) Walters, S. P.; Schneider, N. J.; Guthrie, J. D. Geospatial Multi-

Agency Coordination (GeoMAC) Wildland Fire Perimeters, 2008; U.S.
Geological Survey: Reston, VA, 2011; Data Series 612, pp 6,
DOI: 10.3133/ds612.
(55) Meng, X.; Garay, M. J.; Diner, D. J.; Kalashnikova, O. V.; Xu, J.;
Liu, Y. Estimating PM2.5 speciation concentrations using prototype
4.4 km-resolution MISR aerosol properties over Southern California.
Atmos. Environ. 2018, 181, 70−81.
(56) Childs, M. L.; Li, J.; Wen, J.; Heft-Neal, S.; Driscoll, A.; Wang,
S.; Gould, C. F.; Qiu, M.; Burney, J.; Burke, M. Daily Local-Level

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.5c01641
Environ. Sci. Technol. 2025, 59, 12196−12210

12208

https://doi.org/10.1016/j.scitotenv.2021.146739
https://doi.org/10.1038/s44220-024-00210-8
https://doi.org/10.1038/s44220-024-00210-8
https://doi.org/10.1016/j.envres.2024.118175
https://doi.org/10.1016/j.envres.2024.118175
https://doi.org/10.1016/j.envint.2019.105268
https://doi.org/10.1016/j.envint.2019.105268
https://doi.org/10.1016/j.envint.2021.106969
https://doi.org/10.1016/j.envint.2021.106969
https://doi.org/10.1016/j.envint.2021.106969
https://doi.org/10.1016/j.scitotenv.2016.11.025
https://doi.org/10.1016/j.scitotenv.2016.11.025
https://doi.org/10.1186/s12989-020-00394-8
https://doi.org/10.1007/s00484-010-0324-2
https://doi.org/10.1007/s00484-010-0324-2
https://doi.org/10.1038/nclimate1658
https://doi.org/10.1038/nclimate1658
https://doi.org/10.1289/ehp.1409277
https://doi.org/10.1289/ehp.1409277
https://doi.org/10.1186/s12940-020-00646-2
https://doi.org/10.1186/s12940-020-00646-2
https://doi.org/10.1186/s12940-020-00646-2
https://doi.org/10.1186/s12940-020-00646-2
https://doi.org/10.1097/EDE.0000000000000556
https://doi.org/10.1097/EDE.0000000000000556
https://doi.org/10.1016/j.atmosenv.2022.119334
https://doi.org/10.1016/j.atmosenv.2022.119334
https://doi.org/10.1016/j.atmosenv.2022.119334
https://doi.org/10.1021/acs.est.0c03761?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c03761?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c03761?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c05143?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c05143?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1029/2021GL094908
https://doi.org/10.1029/2021GL094908
https://doi.org/10.5194/acp-20-969-2020
https://doi.org/10.5194/acp-20-969-2020
https://doi.org/10.5194/acp-20-969-2020
https://doi.org/10.1016/j.rse.2024.113995
https://doi.org/10.1016/j.rse.2024.113995
https://doi.org/10.2202/1544-6115.1309
https://doi.org/10.1016/j.envint.2019.104909
https://doi.org/10.1016/j.envint.2019.104909
https://doi.org/10.1016/j.envint.2019.104909
https://doi.org/10.1080/10962247.2014.956904
https://doi.org/10.1080/10962247.2014.956904
https://doi.org/10.1080/10473289.2003.10466318
https://doi.org/10.1080/10473289.2003.10466318
https://doi.org/10.1016/j.atmosenv.2010.10.024
https://doi.org/10.1016/j.atmosenv.2010.10.024
https://doi.org/10.1016/j.atmosenv.2010.10.024
https://doi.org/10.1016/j.atmosenv.2010.10.024
https://doi.org/10.5194/gmd-14-2867-2021
https://doi.org/10.5194/gmd-14-2867-2021
https://doi.org/10.5194/gmd-14-2867-2021
https://doi.org/10.1016/j.atmosenv.2015.10.041
https://doi.org/10.1016/j.atmosenv.2015.10.041
https://doi.org/10.1016/j.atmosenv.2015.10.041
https://doi.org/10.1016/j.atmosenv.2021.118620
https://doi.org/10.1016/j.atmosenv.2021.118620
https://doi.org/10.1016/j.atmosenv.2021.118620
https://doi.org/10.1016/j.jes.2018.09.007
https://doi.org/10.1016/j.jes.2018.09.007
https://doi.org/10.4996/fireecology.0301003
https://doi.org/10.3133/ds612?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.atmosenv.2018.03.019
https://doi.org/10.1016/j.atmosenv.2018.03.019
https://doi.org/10.1021/acs.est.2c02934?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.5c01641?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Estimates of Ambient Wildfire Smoke PM2.5 for the Contiguous US.
Environ. Sci. Technol. 2022, 56 (19), 13607−13621.
(57) Wei, J.; Li, Z.; Chen, X.; Li, C.; Sun, Y.; Wang, J.; Lyapustin, A.;
Brasseur, G. P.; Jiang, M.; Sun, L.; Wang, T.; Jung, C. H.; Qiu, B.;
Fang, C.; Liu, X.; Hao, J.; Wang, Y.; Zhan, M.; Song, X.; Liu, Y.
Separating Daily 1 km PM2.5 Inorganic Chemical Composition in
China since 2000 via Deep Learning Integrating Ground, Satellite,
and Model Data. Environ. Sci. Technol. 2023, 57 (46), 18282−18295.
(58) Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS
Collection 6 MAIAC algorithm. Atmos. Meas. Technol. 2018, 11 (10),
5741−5765.
(59) Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; Kegelmeyer, W. P.
SMOTE: synthetic minority over-sampling technique. Journal of
artificial intelligence research 2002, 16, 321−357.
(60) Geng, G.; Meng, X.; He, K.; Liu, Y. Random forest models for
PM2.5 speciation concentrations using MISR fractional AODs.
Environmental Research Letters 2020, 15 (3), 034056.
(61) Ploton, P.; Mortier, F.; Réjou-Méchain, M.; Barbier, N.; Picard,
N.; Rossi, V.; Dormann, C.; Cornu, G.; Viennois, G.; Bayol, N.; et al.
Spatial validation reveals poor predictive performance of large-scale
ecological mapping models. Nat. Commun. 2020, 11 (1), 4540.
(62) Hao, H.; Wang, Y.; Zhu, Q.; Zhang, H.; Rosenberg, A.;
Schwartz, J.; Amini, H.; van Donkelaar, A.; Martin, R.; Liu, P.; et al.
National cohort study of long-term exposure to PM2.5 components
and mortality in Medicare American older adults. Environ. Sci.
Technol. 2023, 57 (17), 6835−6843.
(63) U.S. Department of Health and Human Services (HHS). HHS

Standard Values for Regulatory Analysis, 2024; HHS: Washington,
D.C., 2024.
(64) Judek, S.; Stieb, D.; Jovic, B.; Edwards, B. Air Quality Benefits

Assessment Tool (AQBAT) User Guide: Version 2; Health Canada:
Ottawa, Ontario, Canada, 2012.
(65) Crouse, D. L.; Peters, P. A.; van Donkelaar, A.; Goldberg, M. S.;
Villeneuve, P. J.; Brion, O.; Khan, S.; Atari, D. O.; Jerrett, M.; Pope,
C. A., III; et al. Risk of nonaccidental and cardiovascular mortality in
relation to long-term exposure to low concentrations of fine
particulate matter: a Canadian national-level cohort study. Environ.
Health Perspect. 2012, 120 (5), 708−714.
(66) Chestnut, L.; De Civita, P. Economic Valuation of Mortality Risk

Reduction; Government of Canada: Ottawa, Ontario, Canada, 2009;
pp 1−69.
(67) Cummins, K.; Noble, J.; Varner, J. M.; Robertson, K. M.; Hiers,
J. K.; Nowell, H. K.; Simonson, E. Simonson, E. The Southeastern
U.S. Prescribed Fire Permit Database: Hot Spots and Hot Moments
in Prescribed Fire across the Southeastern U.S.A. Fire 2023, 6 (10),
372.
(68) Rogers, H. M.; Ditto, J. C.; Gentner, D. R. Evidence for impacts
on surface-level air quality in the northeastern US from long-distance
transport of smoke from North American fires during the Long Island
Sound Tropospheric Ozone Study (LISTOS) 2018. Atmospheric
Chemistry and Physics 2020, 20 (2), 671−682.
(69) Wang, Z.; Huang, X.; Xue, L.; Ding, K.; Lou, S.; Zhu, A.; Ding,
A. Intensification of mid-latitude cyclone by aerosol-radiation
interaction increases transport of Canadian wildfire smoke to
northeastern US. Geophys . Res . Lett . 2024 , 51 (13),
No. e2024GL108444.
(70) Brown, T.; Leach, S.; Wachter, B.; Gardunio, B. The Northern
California 2018 extreme fire season. Bulletin of the American
Meteorological Society 2020, 101 (1), S1−S4.
(71) Zhai, J.; Ning, Z.; Dahal, R.; Yang, S. Wildfire Susceptibility of
Land Use and Topographic Features in the Western United States:
Implications for the Landscape Management. Forests 2023, 14 (4),
807.
(72) Williams, A. P.; Abatzoglou, J. T.; Gershunov, A.; Guzman-
Morales, J.; Bishop, D. A.; Balch, J. K.; Lettenmaier, D. P. Observed
impacts of anthropogenic climate change on wildfire in California.
Earth’s Future 2019, 7 (8), 892−910.
(73) Jain, P.; Castellanos-Acuna, D.; Coogan, S. C.; Abatzoglou, J.
T.; Flannigan, M. D. Observed increases in extreme fire weather

driven by atmospheric humidity and temperature. Nature Climate
Change 2022, 12 (1), 63−70.
(74) Halofsky, J. E.; Peterson, D. L.; Harvey, B. J. Changing wildfire,
changing forests: the effects of climate change on fire regimes and
vegetation in the Pacific Northwest, USA. Fire Ecology 2020, 16 (1), 4.
(75) Westerling, A. L.; Hidalgo, H. G.; Cayan, D. R.; Swetnam, T.
W. Warming and earlier spring increase western US forest wildfire
activity. science 2006, 313 (5789), 940−943.
(76) Yu, G.; Feng, Y.; Wang, J.; Wright, D. B. Performance of Fire
Danger Indices and Their Utility in Predicting Future Wildfire Danger
Over the Conterminous United States. Earth’s Future 2023, 11 (11),
No. e2023EF003823.
(77) Di Virgilio, G.; Evans, J. P.; Blake, S. A.; Armstrong, M.;
Dowdy, A. J.; Sharples, J.; McRae, R. Climate change increases the
potential for extreme wildfires. Geophys. Res. Lett. 2019, 46 (14),
8517−8526.
(78) Liu, Y.; Liu, Y.; Fu, J.; Yang, C.-E.; Dong, X.; Tian, H.; Tao, B.;
Yang, J.; Wang, Y.; Zou, Y.; Ke, Z. Projection of future wildfire
emissions in western USA under climate change: contributions from
changes in wildfire, fuel loading and fuel moisture. International
Journal of Wildland Fire 2022, 31 (1), 1−13.
(79) Munoz-Alpizar, R.; Pavlovic, R.; Moran, M. D.; Chen, J.;
Gravel, S.; Henderson, S. B.; Ménard, S.; Racine, J.; Duhamel, A.;
Gilbert, S.; Beaulieu, P.-A.; Landry, H.; Davignon, D.; Cousineau, S.;
Bouchet, V. Multi-Year (2013−2016) PM2.5 Wildfire Pollution
Exposure over North America as Determined from Operational Air
Quality Forecasts. Atmosphere 2017, 8 (9), 179.
(80) Pavlovic, R.; Chen, J.; Anderson, K.; Moran, M. D.; Beaulieu,
P.-A.; Davignon, D.; Cousineau, S. The FireWork air quality forecast
system with near-real-time biomass burning emissions: Recent
developments and evaluation of performance for the 2015 North
American wildfire season. J. Air Waste Manage. Assoc. 2016, 66 (9),
819−841.
(81) American Lung Association. State of the Air 2020; American
Lung Association: Chicago, IL, 2020.
(82) Burke, M.; Childs, M. L.; de la Cuesta, B.; Qiu, M.; Li, J.;
Gould, C. F.; Heft-Neal, S.; Wara, M. The contribution of wildfire to
PM2.5 trends in the USA. Nature 2023, 622 (7984), 761−766.
(83) Hanes, C. C.; Wang, X.; Jain, P.; Parisien, M.-A.; Little, J. M.;
Flannigan, M. D. Fire-regime changes in Canada over the last half
century. Canadian Journal of Forest Research 2019, 49 (3), 256−269.
(84) Coogan, S. C.; Robinne, F.-N.; Jain, P.; Flannigan, M. D.
Scientists’ warning on wildfire�A Canadian perspective. Canadian
Journal of Forest Research 2019, 49 (9), 1015−1023.
(85) Wang, Z.; Wang, Z.; Zou, Z.; Chen, X.; Wu, H.; Wang, W.; Su,
H.; Li, F.; Xu, W.; Liu, Z. Severe Global Environmental Issues Caused
by Canada’s Record-Breaking Wildfires in 2023. Adv. Atmos. Sci.
2024, 41, 565−571.
(86) Carter, T. S.; Heald, C. L.; Jimenez, J. L.; Campuzano-Jost, P.;
Kondo, Y.; Moteki, N.; Schwarz, J. P.; Wiedinmyer, C.; Darmenov, A.
S.; da Silva, A. M.; Kaiser, J. W. How emissions uncertainty influences
the distribution and radiative impacts of smoke from fires in North
America. Atmospheric Chemistry and Physics Discussions 2020, 20 (4),
2073−2097.
(87) Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution
characteristics and the influence factors of forest fires in China.
Forest Ecology and Management 2013, 310, 460−467.
(88) Valkó, O.; Deák, B. Increasing the potential of prescribed
burning for the biodiversity conservation of European grasslands.
Current Opinion in Environmental Science & Health 2021, 22, 100268.
(89) Weir, J. R.; Scasta, J. D. Global Application of Prescribed Fire;
CSIRO Publishing: Clayton, Australia, 2022.
(90) Kolden, C. A. We’re Not Doing Enough Prescribed Fire in the
Western United States to Mitigate Wildfire Risk. Fire 2019, 2 (2), 30.
(91) Engebretson, J. M.; Hall, T. E.; Blades, J. J.; Olsen, C. S.;
Toman, E.; Frederick, S. S. Characterizing public tolerance of smoke
from wildland fires in communities across the United States. Journal of
Forestry 2016, 114 (6), 601−609.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.5c01641
Environ. Sci. Technol. 2025, 59, 12196−12210

12209

https://doi.org/10.1021/acs.est.2c02934?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c00272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c00272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c00272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.5194/amt-11-5741-2018
https://doi.org/10.5194/amt-11-5741-2018
https://doi.org/10.1613/jair.953
https://doi.org/10.1088/1748-9326/ab76df
https://doi.org/10.1088/1748-9326/ab76df
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1021/acs.est.2c07064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c07064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1289/ehp.1104049
https://doi.org/10.1289/ehp.1104049
https://doi.org/10.1289/ehp.1104049
https://doi.org/10.3390/fire6100372
https://doi.org/10.3390/fire6100372
https://doi.org/10.3390/fire6100372
https://doi.org/10.5194/acp-20-671-2020
https://doi.org/10.5194/acp-20-671-2020
https://doi.org/10.5194/acp-20-671-2020
https://doi.org/10.5194/acp-20-671-2020
https://doi.org/10.1029/2024GL108444
https://doi.org/10.1029/2024GL108444
https://doi.org/10.1029/2024GL108444
https://doi.org/10.1175/BAMS-D-19-0275.1
https://doi.org/10.1175/BAMS-D-19-0275.1
https://doi.org/10.3390/f14040807
https://doi.org/10.3390/f14040807
https://doi.org/10.3390/f14040807
https://doi.org/10.1029/2019EF001210
https://doi.org/10.1029/2019EF001210
https://doi.org/10.1038/s41558-021-01224-1
https://doi.org/10.1038/s41558-021-01224-1
https://doi.org/10.1186/s42408-019-0062-8
https://doi.org/10.1186/s42408-019-0062-8
https://doi.org/10.1186/s42408-019-0062-8
https://doi.org/10.1126/science.1128834
https://doi.org/10.1126/science.1128834
https://doi.org/10.1029/2023EF003823
https://doi.org/10.1029/2023EF003823
https://doi.org/10.1029/2023EF003823
https://doi.org/10.1029/2019GL083699
https://doi.org/10.1029/2019GL083699
https://doi.org/10.1071/WF20190
https://doi.org/10.1071/WF20190
https://doi.org/10.1071/WF20190
https://doi.org/10.3390/atmos8090179
https://doi.org/10.3390/atmos8090179
https://doi.org/10.3390/atmos8090179
https://doi.org/10.1080/10962247.2016.1158214
https://doi.org/10.1080/10962247.2016.1158214
https://doi.org/10.1080/10962247.2016.1158214
https://doi.org/10.1080/10962247.2016.1158214
https://doi.org/10.1038/s41586-023-06522-6
https://doi.org/10.1038/s41586-023-06522-6
https://doi.org/10.1139/cjfr-2018-0293
https://doi.org/10.1139/cjfr-2018-0293
https://doi.org/10.1139/cjfr-2019-0094
https://doi.org/10.1007/s00376-023-3241-0
https://doi.org/10.1007/s00376-023-3241-0
https://doi.org/10.5194/acp-20-2073-2020
https://doi.org/10.5194/acp-20-2073-2020
https://doi.org/10.5194/acp-20-2073-2020
https://doi.org/10.1016/j.foreco.2013.08.025
https://doi.org/10.1016/j.foreco.2013.08.025
https://doi.org/10.1016/j.coesh.2021.100268
https://doi.org/10.1016/j.coesh.2021.100268
https://doi.org/10.3390/fire2020030
https://doi.org/10.3390/fire2020030
https://doi.org/10.5849/jof.14-142
https://doi.org/10.5849/jof.14-142
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.5c01641?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(92) U.S. Department of the Interior. Budget Justifications and
Performance Information Fiscal Year 2024: Wildland Fire Management;
U.S. Department of the Interior: Washington, D.C., 2024; https://
www.doi.gov/media/document/fy2024-wfm-greenbook-508-pdf.
(93) Wiedinmyer, C.; Hurteau, M. D. Prescribed fire as a means of
reducing forest carbon emissions in the western United States.
Environ. Sci. Technol. 2010, 44 (6), 1926−1932.
(94) Arkle, R. S.; Pilliod, D. S.; Welty, J. L. Pattern and process of
prescribed fires influence effectiveness at reducing wildfire severity in
dry coniferous forests. Forest Ecology and Management 2012, 276,
174−184.
(95) Tolhurst, K. G.; McCarthy, G. Effect of prescribed burning on
wildfire severity: a landscape-scale case study from the 2003 fires in
Victoria. Australian Forestry 2016, 79 (1), 1−14.
(96) Williamson, G. J.; Bowman, D. M. J. S.; Price, O. F.;
Henderson, S. B.; Johnston, F. H. A transdisciplinary approach to
understanding the health effects of wildfire and prescribed fire smoke
regimes. Environmental Research Letters 2016, 11 (12), 125009.
(97) Macias Fauria, M.; Johnson, E. Climate and wildfires in the
North American boreal forest. Philosophical Transactions of the Royal
Society B: Biological Sciences 2008, 363 (1501), 2315−2327.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.5c01641
Environ. Sci. Technol. 2025, 59, 12196−12210

12210

https://www.doi.gov/media/document/fy2024-wfm-greenbook-508-pdf
https://www.doi.gov/media/document/fy2024-wfm-greenbook-508-pdf
https://doi.org/10.1021/es902455e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es902455e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.foreco.2012.04.002
https://doi.org/10.1016/j.foreco.2012.04.002
https://doi.org/10.1016/j.foreco.2012.04.002
https://doi.org/10.1080/00049158.2015.1127197
https://doi.org/10.1080/00049158.2015.1127197
https://doi.org/10.1080/00049158.2015.1127197
https://doi.org/10.1088/1748-9326/11/12/125009
https://doi.org/10.1088/1748-9326/11/12/125009
https://doi.org/10.1088/1748-9326/11/12/125009
https://doi.org/10.1098/rstb.2007.2202
https://doi.org/10.1098/rstb.2007.2202
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.5c01641?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

