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A B S T R A C T

Context or problem: Future climate scenarios present significant challenges to sustainable cotton production. 
Developing effective adaptation strategies is crucial to mitigate these threats.
Objective or research question: This study evaluates the impact of climate change on cotton lint yield under 
different tillage systems and nitrogen application rates to identify potential adaptation strategies.
Methods: A long-term cotton field experiment (39 years) was conducted in Jackson, Tennessee, with two tillage 
systems (no-tillage and conventional tillage) and four nitrogen (N) application rates (0, 33, 67, and 101 kg ha⁻¹). 
The DSSAT model, coupled with two representative concentration pathways (RCP4.5 and RCP8.5) and five 
global circulation models (GCMs), was used to simulate cotton lint yield from 2025 to 2057, encompassing near- 
term (2025–2035), mid-term (2036–2046), and far-term (2047–2057) future scenarios.
Results: Increasing nitrogen application rates positively influenced cotton lint yield under both tillage systems 
across all scenarios. However, no-tillage consistently outperformed conventional tillage, particularly under 
RCP8.5, indicating its potential benefits in a changing climate. Model projections suggest that while initial yield 
benefits are observed, these may diminish over time as climate impacts intensify. Under RCP4.5, yields increased 
in the near-term but showed declining trends in the mid-term and far-term. Under RCP8.5, despite initial 
resilience, all models predicted significant yield declines in the mid-term and far-term, with the most pronounced 
reductions in the MRI-CGCM3 model.
Conclusions: This study highlights the importance of adaptive strategies such as no-tillage in mitigating negative 
climate impacts on cotton yields.
Implications or significance: Implementing no-tillage practices combined with optimized nitrogen management 
may enhance cotton productivity under future climate scenarios, especially under the more severe conditions 
projected in RCP8.5

1. Introduction

Cotton production has increased threefold worldwide during the last 
50 years. The United States is the leader in global exports, supplying 
more than 35 percent of the world’s raw cotton export market (USDA, 
2020). Cotton is a dual-purpose crop grown for fiber and oil and is the 
major world fiber crop (Ali et al., 2019). Under field conditions, various 
factors such as environmental conditions and agricultural management 
practices substantially influence cotton growth and productivity (Noor 
Shah et al., 2022). This study focuses on cotton in Tennessee’s North 
Cotton Belt, a region where cotton is economically crucial and widely 

grown. Conducting the study here allows us to address specific regional 
climate challenges, such as variable rainfall and temperature fluctua
tions, and assess how practices like conservation tillage and optimized 
nitrogen management can improve yield and soil health (Bange et al., 
2016). Conservation tillage and optimal N management are increasingly 
vital due to concerns over soil health, erosion, and nutrient runoff 
(Bezboruah et al., 2024). These practices are critical for sustainable 
production in Tennessee’s cotton-growing regions.

Nitrogen is crucial for cotton growth, productivity, and quality, often 
needing more attention than other nutrients (Khan et al., 2017a). Sus
tainable cotton production means maintaining and enhancing yield 
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levels without harming the land and the environment. However, 
excessive nitrogen application rates not only lead to stunted growth, 
prolonged crop maturity, and reduced productivity but also contribute 
to environmental pollution (Niu et al., 2021; Huang et al., 2022; Kumar 
et al., 2022; Wang et al., 2022). Previously published reports suggest 
that providing appropriate nitrogen doses can increase biomass pro
duction and improve cotton yield and quality (Chen et al., 2016; Niu 
et al., 2021). Furthermore, other studies indicate that reducing nitrogen 
rates through suitable agronomic management practices enhances lint 
yield and quality (Dong et al., 2012; Luo et al., 2018).

In addition to N fertilization, the tillage system also influences 
mineralization and later release of nutrients from the soil (Khan et al., 
2017b). Among commonly used tillage practices, no-tillage retains more 
crop residues on soil surface, leading to reduced soil erosion and evap
oration and increased nitrogen use efficiency compared to conventional 
tillage (Lal et al., 2007). Meanwhile, no-tillage resulted in more N up
take by cotton than conventional tillage (Idowa et al., 2020).

Climate change poses significant risks to current global production 
systems, with evidence indicating that even a slight warming of + 1.5◦C 
could lead to decreased agricultural productivity worldwide, threat
ening food security (Rosenzweig et al., 2014; Lal et al., 2007). Rising 
temperatures and unpredictable rainfall patterns negatively affect crop 
growth, development, and yield (Hogy et al., 2013). Although efforts 
have been made to gather data and understand crop yield projections, it 
remains impossible to accurately replicate future ecosystems or atmo
spheric conditions. Therefore, using models to predict and simulate crop 
responses to future conditions is justified.

CMIP5 models offer standardized simulations, making them partic
ularly useful for assessing projected changes in temperature, precipita
tion, and other climatic variables under different greenhouse gas 
emission scenarios (Miao et al., 2014). The Representative Concentra
tion Pathways (RCPs) are standardized scenarios developed by the 
Intergovernmental Panel on Climate Change (IPCC) to model future 
climate trajectories based on various levels of greenhouse gas emissions. 
By analyzing RCPS, we capture a range of possible future climates, 
allowing us to assess the resilience of cotton production under moderate 
and severe climate stress conditions (Moss et al., 2010; Taylor et al., 
2012).

Crop simulation models leverage long-term weather data to account 
for variability, helping assess the risks of adopting alternative crop 
management strategies at specific sites (Kephe et al., 2021). These 
models offer significant advantages, such as minimal reliance on field 
calibration data and transparent assessment of model uncertainties 
(Zhao et al., 2015). Studies have demonstrated that yield predictions 
from regression models based on historical climate data for specific 
crops are relatively accurate in response to climate variable changes 
(Isik and Devadoss, 2006; Lobell and Field, 2007).

The Decision Support System for Agrotechnology Transfer (DSSAT) 
is a widely utilized tool capable of simulating crop growth stage, 
development, and yield responses to variations in agrometeorological 
conditions, soil properties, and management practices (Hoogenboom 
et al., 2012). By employing field experimental data, a well-calibrated 
DSSAT model can effectively simulate crop responses under various 
experimental conditions, expediting decision-making processes by 
reducing the time and resources needed for extensive field experiments. 
DSSAT-CSM has been employed by numerous researchers for various 
purposes (Rezzoug et al., 2008; Liu et al., 2011; Hoogenboom et al., 
2012; Mauget et al., 2017). For instance, Wajid et al. (2014) utilized the 
CSM-CROPGRO model to simulate the growth, development, and seed 
cotton yield of four cotton cultivars under different nitrogen fertilizer 
rates and planting dates in Pakistan. Their findings showed that the 
simulated crop phenology, seed cotton yield, and total dry matter 
aligned reasonably well with the observed data. Similarly, Reddy et al. 
(2002) employed the cotton simulation model to examine the impact of 
climate change on cotton production in Stoneville, Mississippi, USA.

This study aimed to assess 1) the impacts of climate changes on 

cotton production under the RCP4.5, and RCP8.5, 2) cotton yield pre
dictions under key management practices and projected future climate 
scenarios in three decades, and 3) the effects of long-term N fertilization 
and tillage on cotton lint yield.

2. Methods

2.1. Study region

The study was conducted at the University of Tennessee Institute of 
Agriculture’s West Tennessee Research and Education Center (UTIA- 
WTREC) in Jackson, TN, USA with a geographical location of 35◦37’N: 
88◦51’W, altitude 113 m above mean sea level (Fig. 1). The study area is 
of approximately 0.7 ha and located within the north Cotton Belt in the 
United States.

The study area is generally flat to gently rolling topography with 
slopes of less than 2 %. The soil is classified as Aeric Lexington. The 
texture is silt loam, with moderately well drainage. Soil tests were 
conducted before planting to assess the physicochemical characteristics 
of the soil in the study area, which are presented in Table 1.

The climate of the studied area is typically humid subtropical (The 
Köppen climate classification for this region is Cfa), with an annual 
average rainfall of 1375 mm and an average temperature of approxi
mately 15.5◦C. Fig. 2 shows the maximum rainfall recorded in 1996, 
totaling 1722.2 mm, while the minimum was in 1988, with 1004.2 mm. 
Additionally, the highest temperature occurred in 2014, reaching 
24.9◦C and the lowest was in 2010, at 6.5◦C.

2.2. Field experiment

The experiment was conducted in 1986–2018 at the UTIA-WTREC in 
Jackson, Tennessee. The field experiment on the cotton crop was con
ducted under the combinations of two tillage systems: conventional (CT, 
chisel plow) and no-tillage (NT); and four N application rates: 0 (N0), 33 
(N1), 67 (N2), and 101 (N3) kg ha− 1. The field experiment was a ran
domized complete block with a split-plot design with N rates as the main 
plots, and tillage systems as the subplots, with four replicates. The crop 
was sown at a depth of 4 cm. Cotton was uniformly seeded on the plot, 
targeting about 86,500 plants ha− 1. Different cotton cultivars were used 
over the 40-year study period to reflect regional farming practices and 
adapt to changing cultivar availability and suitability. This variability 
allowed the study to maintain relevance across evolving agricultural 
conditions. The tilled treatments were double-disked to a depth of 10 cm 
and were harrow-leveled to prepare the seedbed. Irrigation was applied 
based on the soil water content within the effective root zone depth, 
measured using soil moisture sensors (tensiometers) at regular intervals 
throughout the growing season. Irrigation was triggered when soil water 
content fell below a threshold of 50 % of field capacity, ensuring optimal 
moisture levels were maintained. The use of irrigation limits the 
generalizability of these results to systems without irrigation. While 
these findings are relevant for irrigated fields, caution should be exer
cised when extrapolating to rain-fed systems. Cotton was harvested 
mechanically and ginned, and lint yield was recorded in October each 
year.

2.3. Climate scenarios

The observed daily meteorological data for the baseline (1986–2018) 
was collected from the Weather Research and Forecasting (WRF) model. 
The daily maximum and minimum temperature, precipitation, and solar 
radiation were all adjusted.

The observed daily meteorological data for the baseline period 
(1986–2018) was collected from the Weather Research and Forecasting 
(WRF) model, using bias-corrected estimated data to enhance accuracy. 
Daily maximum and minimum temperatures, precipitation, and solar 
radiation were adjusted based on historical observational data, focusing 
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on bias-correcting precipitation estimates to align with regional climate 
trends. This bias correction improves the reliability of model inputs for 
assessing long-term climate impacts.

General circulation models are the most widely used models to 
simulate local climate trends relative to the global scale (Sachindra 
et al., 2014) by producing climate scenarios and time horizons. For this 
study, future projected climate data of rainfall and temperature for three 
phases [first decade (2025–2035), second decade (2036–2046), and 
third decade (2047–2057)] were explored and analyzed from CMIP5 
(Coupled Model Inter-comparison Project Phase 5 dataset (Yang and 
Wang, 2023), from five GCMs under RCP4.5 and RCP8.5 using MarkSim 
weather generator (Rahman et al., 2021) which has been statistically 

bias-corrected (Table 2).

2.4. Crop modeling

2.4.1. Crop growth modeling
The DSSAT modeling system consists of crop-specific models for 

simulating the yield of crops. It is widely used worldwide for climate 
change impact assessment in field crops. It has different modules to 
simulate water balance, nutrient dynamics, crop growth, phenology, 
biomass, and yield based on crop characteristics like phenology, 
photoperiod, leaf area development, biomass partitioning, etc. The input 
data required for the calibration and validation in DSSAT includes daily 

Fig. 1. Map of the study district.

Table 1 
Soil physical and chemical properties at 0–15 and 15–30 cm depths in Jackson, TN.

Depth (cm) Silt 
(g kg− 1)

Clay 
(g kg− 1)

Sand 
(g kg− 1)

Organic C (mg g− 1) pH CEC 
(cmol kg− 1)

Total N 
(mg g− 1)

Bulk density (g cm− 3)

0–15 660 165 175 6.1 6.4 20 1.01 1.51
15–30 662 210 128 4.5 6.4 20 1.01 1.52

Fig. 2. Annual precipitation and maximum and minimum temperatures during 1986–2018 at Jackson, Tennessee.
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weather data, soil data, crop management data, and observed crop data 
(Hoogenboom et al., 2010). The cropping system model (CSM) in DSSAT 
consists of different modules for different categories of crops for simu
lation. In this study, we used the CROPGRO Cotton model.

2.4.2. Model calibration and validation
Twelve cultivar parameters and five ecotype parameters were 

adjusted until the simulated crop development stages and cotton yields 
matched reasonably well with measured data (Table 3).

The crop model performance was examined by comparison of 
observed and simulated values for the crop parameters. Hence, we 
employed three deviation statistics including determination coefficient 
(R2), index of agreement (d), and root means square error (RMSE) to 
evaluate the CROPGRO-Cotton model, which was calculated using Eqs. 
(1)-(3), respectively. The R2 values range between 0 and 1, with 0 indi
cating “no fit” and 1 indicating “perfect fit” between the simulated and 
observed values. 

R2 =

(
∑N

i=1
(Yi − Y)(Ŷ − Yi))2

∑N

i=1
(Yi − Y)2 ∑N

i=1
(Ŷi − Yi)2

(1) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Ŷ − Yi)2

N

√
√
√
√
√

(2) 

d = 1 −

⎡

⎢
⎢
⎢
⎣

∑N

i=1
(Ŷi − Yi)2

∑N

i=1
(|Ŷi − Yi| + |Yi − Yi|)2

⎤

⎥
⎥
⎥
⎦

(3) 

where Yi, observed value, Ŷ, simulated value, Yi, average of simulated 
value, Y, average of observed value, N, number of observations.

3. Results

3.1. Effects of temperature and precipitation on cotton yields under NT 
and CT during 1986–2018

In this experiment, the impact of climate change on cotton yields 
significantly fluctuated under no-tillage conditions over several decades. 
The data collected from 1986 to 2018 present a complicated relationship 
between temperature, precipitation, and cotton yield (Fig. 3).

In 1989, there was a notable decrease in temperature by − 9.58 % 
compared to 1986, coupled with a substantial increase in rainfall by 
48.46 %. These changes coincided with a significant reduction in cotton 
yield, dropping from 1065.40 to 609.84 kg ha− 1. The correlation was 
stronger, with R2 = 0.101 for the relationship between cotton yield and 

temperature, and R2 = 0.155 for the relationship between yield and 
precipitation, showing a closer link between climate factors and yield. 
Despite these severe temperature changes from 1989 to 1993, crop 
performance remained relatively stable, suggesting a period of adjust
ment to this altered weather (Fig. 3a, b).

Further significant declines in yield occurred in 1998, 2006, and 
2013. Precipitation was up by 23.85 % in 1998, while it fell by − 8.11 % 
and − 9.15 % in 2006 and 2013, respectively, from its 1986 level. 
Temperature trends also showed variability; there was a decrease in 
temperature of − 5.9 % in 1998, but an increase of 6.51 % and 11.03 % 
in 2006 and 2013, respectively, from the 1986 baseline (Fig. 3a, b).

Peak yield years were recorded in 2015 (1579 kg ha− 1), where in
creases of 48.26 %, were observed, above the 1986 (1065.40 kg ha− 1) 
level. However, starting in 2015, an upward trend in temperature 
coupled with a reduction in precipitation led to a downward trend in 
yields, illustrating the ongoing impact of climatic factors on agricultural 
productivity under no-tillage farming practices (Fig. 3a, b).

Under conventional tillage conditions, significant fluctuations in 
crop yield were also observed over the years, influenced by changes in 
both temperature and rainfall (Fig. 4). Significant reductions in yield 
were observed in the years 1992, 1998, 2006, and 2013, reflecting 

Table 2 
Description of selected five GCMs from Coupled Model Intercomparison Project 
Phase 5 (CMIP5).

GCMs Institution Resolution, Lat. 
× Long.

Approx. 
Resolution (km)

FIO-ESM The First Institute of 
Oceanography, SOA, 
China

2.812 × 2.812 ~312 × 312

GFDL- 
ESM2M

Geophysical Fluid 
Dynamics Laboratory

2.0 × 2.5 ~222 × 278

HadGEM2- 
ES

Met Office Hadley Centre 1.2414 × 1.875 ~138 × 208

IPSL-CM5A- 
MR

Institute Pierre-Simon 
Laplace

1.2587 × 2.5 ~140 × 278

MRI- 
CGCM3

Meteorological Research 
Institute

1.125 × 1.125 ~125 × 125

Table 3 
Parameters adjusted during the CSM-CROPGRO-Cotton model calibration.

Parameters Description Testing 
range

Calibrated 
value

Cultivar 
parameters

​ ​

EM-FL Time between plant emergence and 
flower appearance (photothermal 
days)

34–44 39

FL-SH Time between first flower and first 
pod (photothermal days)

6–12 8

FL-SD Time between first flower and first 
seed (photothermal days)

12–18 15

SD-PM Time between first seed and 
physiological maturity 
(photothermal days)

42–50 40

FL-LF Time between first flower and end of 
leaf expansion (photothermal days)

55–75 57

LFMAX Maximum leaf photosynthesis rate at 
30◦C, 350 ppm CO2, and high light 
(mg CO2 m− 2 s− 1)

0.7–1.4 1.05

SLAVR Specific leaf area of cultivar under 
standard growth conditions (cm2 

g− 1)

170–175 170

SIZLF Maximum size of full leaf (three 
leaflets) (cm2)

250–320 300

XFRT Maximum fraction of daily growth 
that is partitioned to seed + shell

0.7–0.9 0.7

SFDUR Seed filling duration for pod cohort 
at standard growth conditions 
(photothermal days)

22–35 34

PODUR Time required for cultivar to reach 
final pod load under optimal 
conditions (photothermal days)

8–14 14

THRSH Threshing percentage. The 
maximum ratio of [seed/ (seed +
shell)] at maturity.

68–72 70

Ecotype 
parameters

​ ​

PL-EM Time between planting and 
emergence (thermal days)

3–5 4

EM-V1 Time required from emergence to 
first true leaf, thermal days

3–5 4

RWDTH Relative width of the ecotype in 
comparison to the standard width 
per node

0.8–1.0 1

RHGHT Relative height of the ecotype in 
comparison to the standard height 
per node

0.8–0.95 0.9

FL-VS Time from first flower to last leaf on 
main stem (photothermal days)

40–75 57
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similar patterns seen in no-tillage conditions. From 2015 onwards, a 
trend emerged: declining yields were associated with temperature in
creases and decreases in precipitation. Notably, the peak yield under 
conventional tillage was achieved in 2011, showing a 32.13 % increase 
over the 1986 baseline (Fig. 4).

Regarding extreme weather conditions, the highest temperature and 
precipitation were recorded in 1996 and 2012, respectively. In these 
years, yields were notably higher in no-till conditions (1540 and 
850.88 kg ha− 1) than those under conventional tillage (1334.75 and 
789.07 kg ha− 1). Conversely, the lowest temperatures and rainfall 
occurred in 1997 and 1988, respectively. During these years, yields in 
no-till conditions stood at 1056.21 and 1004.31 kg ha− 1, while con
ventional tillage produced 945.59 and 1095.25 kg ha− 1, respectively 
(Fig. 4).

3.2. Comparison of Cotton lint yield simulation and observation during 
1986–2018

Based on available datasets, Fig. 5 and Fig. 6 showed the observed 
and simulated cotton lint yields at four nitrogen levels under no-tillage 
and conventional tillage during calibration (2009–2011) and validation 
periods (2012–2014). The model accurately predicted lint yield, as 
evidenced by a strong agreement between observed and simulated yields 
and favorable model performance statistics.

During the calibration phase, the model performance statistics 
indicated high levels of accuracy. The coefficient of determination (R²) 
and the index of agreement (d) values ranged from 0.8 to 0.9 across both 
tillage systems for all three years (Table 4). These statistics suggest a 
strong correlation and agreement between the observed and simulated 
data, reflecting the model’s ability to accurately replicate the actual 
yield conditions.

The validation phase (2012–2014) further reinforced the model’s 
reliability. The performance statistics for measured and simulated lint 
yield showed R² and d values ranging from 0.8 to 0.9, except for a 
d value of 0.7 under conventional tillage in 2014 (Table 4). This slight 

deviation in 2014 under conventional tillage indicates a minor under
performance in one specific scenario but does not significantly detract 
from the overall model accuracy.

Root Mean Square Error values provided additional insights into the 
model’s predictive accuracy. For conventional tillage, the RMSE values 
were 152.58 in 2012, 168.23 in 2013, and 254.78 in 2014. Under no- 
tillage, the RMSE values were 189.53 in 2012, 202.56 in 2013, and 
183.47 in 2014 (Table 4). These RMSE values indicate that the dis
crepancies between observed and simulated yields were relatively low, 
confirming the model’s accuracy in predicting lint yields under varying 
nitrogen levels and tillage practices.

Overall, the results from both the calibration and validation phases 
demonstrate that the DSSAT CSM-CROPGRO-Cotton model is highly 
effective in simulating cotton lint yield. The model’s strong performance 
suggests its suitability for further use in simulating the impacts of 
different cropping systems on crop yields, providing a reliable tool for 
agricultural planning and decision-making

3.3. Projected temperature and precipitation in Jackson, Tennessee during 
2025–2057

The average temperatures in both RCPs have risen compared to the 
historical data. In the first, second, and third decades, the temperature 
increases were 9.48 %, 14.92 %, and 19.45 %, respectively, compared 
to the historical in RCP 4.5, while the temperature increases in RCP8.5 
was 23.76 %, 25.23 %, and 35.43 % respectively. The temperature in
crease observed in RCP 8.5 exceeded that of RCP 4.5, with the rate of 
change being 20.22 % higher in RCP8.5 than that in RCP 4.5 in 2057 
(Fig. 7a).

Meanwhile, annual precipitation declined in both RCPs compared to 
the historical records. The precipitation changes in the first, second, and 
third decades were − 0.34 %, − 5.84 %, and − 17.51 % in RCP 4.5, 
− 29.19 %, − 35.29 % and − 44.29 % in RCP 8.5, respectively, compared 
to the historical datum. The decrease in precipitation was more pro
nounced in RCP 8.5 than in RCP 4.5, with the rate of change being 

Fig. 3. Correlation between cotton yield and (a) precipitation and (b) mean temperature under no-tillage from 1986 to 2018.

Fig. 4. Correlation between cotton yield and precipitation (a) and mean temperature (b) under conventional -tillage from 1986 to 2018.
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16.07 % higher RCP 8.5 than in RCP 4.5 in 2057 (Fig. 7b). 3.4. Comparison of changes in cotton lint yields among different nitrogen 
levels in RCP4.5 and RCP8.5 during 2025–2057

Fig. 8(a,b) represents the changes (%) in cotton lint yield at different 
nitrogen levels under no-tillage and conventional tillage and their effect 

Fig. 5. Comparison between measured and simulated cotton lint yield under no-tillage during 2009–2014.
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in historical and future periods.
For the first, second, and third decades under no-tillage conditions in 

the RCP4.5 scenario, increasing nitrogen rate led to positive yield 
changes of 13.34 %, 22.89 %, and 3.91 % respectively at the N2 level, 
and 8.38 %, 6.03 %, and 14.33 % respectively at the N3 level, relative to 
their base yields. In contrast, under the RCP8.5 scenario, positive yield 

changes were observed only in the second and third decades, with 
changes of 8.89 % and 9.50 % at the N2 level, and 8.92 % and 9.21 % at 
the N3 level. Nitrogen-free conditions resulted in negative yield changes 
across all three decades under both scenarios and tillage practices 
compared with its base yields (Fig. 8a).

Under conventional tillage, the RCP4.5 scenario showed more 

Fig. 6. Comparison between measured and simulated cotton lint yield under conventional tillage during 2009–2014.
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positive yield changes compared to the base yield, with changes of 
16.60 %, 10.78 %, and 24.38 % at the N2 level, and 19.73 %, 8.04 %, 
and 16.15 % at the N3 level for the first, second, and third decades, 
respectively. In the RCP8.5 scenario, conventional tillage at the N3 level 
resulted in yield changes of 5.99 %, 8.04 %, and 8.66 % for the first, 
second, and third decades, respectively (Fig. 8b).

The findings indicate that RCP4.5 generally exhibited more positive 
performance changes in cotton yield across all decades compared to 
RCP8.5, highlighting the lower stress conditions under moderate emis
sions scenarios. Conventional tillage consistently led to more positive 
yield changes than no-tillage at both N2 and N3 nitrogen levels. How
ever, under more extreme conditions in RCP8.5, the benefits of con
ventional tillage were less pronounced, underscoring the need for 
additional adaptive measures to cope with severe climatic stresses. This 
study suggests that conventional tillage in the future under moderate 
emission scenarios performs better than itself at the base period.

3.5. Comparison of cotton lint yields between no-tillage and conventional 
tillage in RCP4.5 and RCP8.5 at different nitrogen levels

Increasing nitrogen application resulted in enhanced cotton yields 
under both conventional tillage and no-tillage practices in RCP4.5 and 
8.5 scenarios (Fig. 9a,b).

Under RCP4.5, during the first decade, cotton yields under no-tillage 
surpassed those under conventional tillage across all nitrogen levels. 
Specifically, at nitrogen levels N2 and N3, cotton yields under conven
tional tillage were 2734 kg ha⁻¹ and 2963.32 kg ha⁻¹ , respectively, 
while yields under no-tillage were 2856 kg ha⁻¹ and 3276.51 kg ha⁻¹ , 
respectively (Fig. 9a). In the second decade, no significant differences in 
cotton yields were observed between the two tillage systems at the N0 
level. However, at nitrogen levels N1, N2, and N3, no-tillage consistently 

outperformed conventional tillage. At the N3 level, during the second 
decade, yields under conventional tillage and no-tillage were 
2756 kg ha⁻¹ and 2999.08 kg ha⁻¹ , respectively, and in the third 
decade, they were 2578.45 kg ha⁻¹ and 2615.87 kg ha⁻¹ , respectively 
(Fig. 9a).

While under RCP8.5, at the N0 level, conventional tillage yielded 
higher cotton outputs compared to no-tillage during the first and second 
decades, with no significant differences observed in the third decade. At 
the N1 level, no-tillage produced higher yields than conventional tillage 
across all three decades. For the N2 level, in the first, second and third 
decades, no-tillage yields (2594.86, 2412.32 and 2245.36 kg ha⁻¹, 
respectively) exceeded those of conventional tillage (2278.16, 2081.88 
and 1909.12 kg ha⁻¹, respectively). At the N3 level, a significant dif
ference was observed in the first decade, with yields under conventional 
tillage at 2467.32 kg ha⁻¹ and under no-tillage at 2900.76 kg ha⁻¹ . This 
difference diminished in the second and third decades, with yields in the 
second decade being 2256.06 kg ha⁻¹ under conventional tillage and 
2778 kg ha⁻¹ under no-tillage, and in the third decade, 
2073.23 kg ha⁻¹ and 2586.54 kg ha⁻¹ , respectively (Fig. 9b). These re
sults suggest that no-tillage performs better than conventional tillage, 
particularly at higher nitrogen levels and under RCP8.5.

3.6. Responses of cotton lint yield to N rates and tillage systems under 
different general circulation models during 2025–2057

Fig. 10 (a) illustrates the changes in cotton yield under conventional 
tillage conditions for the RCP 4.5 and RCP8.5 scenario across three 
decades, based on five different models. In the first decade, all five 
models indicated an increase in cotton yield. The FIO-ESM and MRI- 
CGCM3 models showed the highest increases, with yields improving 
by 7.6 % and 7.91 %, respectively, compared to the baseline perfor
mance. In the second decade, the FIO-ESM model shows a decrease in 
yield by 4.1 % relative to the baseline, while the other models maintain 
positive performance changes. By the third decade, only the HADGEM2- 
ES model shows a positive yield change, increasing 4.32 %. The other 
models display decreasing trends, with the GFDL-ESM2M model expe
riencing the largest decrease of 10.8 %. This trend suggests that the 
initial benefits observed may not be sustainable over the long term, as 
more pronounced climate impacts take effect.

Under the RCP8.5 scenario, a more severe climate change projection, 
the trends are markedly different. In the first decade, the FIO-ESM 
(3.61 %), MPI-ESM (3.94 %), and HADGEM2-ES (4.81 %) models 
show positive yield changes. This indicates some initial resilience to 
more extreme climate conditions. However, in the second and third 
decades, all five models exhibited negative changes in yield compared to 
the baseline. The most significant declines occur in the MRI-CGCM3 
model, with reductions of 29.41 % in the second decade and 33.83 % 
in the third decade (Fig. 10)

Under no-tillage conditions in the RCP4.5 scenario, all models dis
played positive performance changes in the first decade. The IPSL- 

Table 4 
Comparison statistics between observed and simulated cotton lint yield during 
model calibration in 2009, 2010, and 2011 and validation in 2012, 2013, and 
2014.

Tillage Year RMSE (kg ha− 1) d-statistic R2

Calibration
​ 2009 139.51 0.90 0.97
Conventional tillage 2010 184.22 0.98 0.95
​ 2011 233.00 0.87 0.84
​ 2009 249.71 0.89 0.91
No-tillage 2010 219.59 0.80 0.80
​ 2011 223.98 0.90 0.92
Validation
​ 2012 152.58 0.96 0.96
Conventional tillage 2013 168.23 0.97 0.91
​ 2014 254.78 0.72 0.83
​ 2012 189.53 0.93 0.90
No-tillage 2013 202.56 0.84 0.86
​ 2014 183.47 0.91 0.98

Fig. 7. Annual mean temperature (a) and precipitation (b) changes for the historical reference period (1986– 2018), and future periods (2019–2057) are projected 
under scenarios RCP4.5 and RCP8.5.
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CM5A-MR model exhibited the highest yield increase at 5.02 %. How
ever, in the second decade, the IPSL-CM5A-MR model showed a slight 
decrease of 1.80 %, and the MRI-CGCM3 model saw a decrease of 
3.56 %. By the third decade, all five models demonstrated a decline in 
performance compared to the baseline, with the GFDL-ESM2M model 
experiencing the largest decrease at 13 % (Fig. 10b).

In the RCP 8.5 scenario, only the IPSL-CM5A-MR model showed a 
yield increase of 1.73 % in the first decade, while the other models 
exhibited negative changes. In the second and third decades, all models 
indicated a trend of decreasing performance. The MRI-CGCM3 model, in 
particular, showed the most significant declines, with decreases of 
26.36 % in the second decade and 29.77 % in the third decade 
(Fig. 10b).

4. Discussion

Using crop growth models to analyze crop growth and yield varia
tions across diverse nitrogen levels and tillage systems proves valuable 
across various weather conditions. These models assist researchers in 
comprehending optimal strategies for both short- and long-term agri
cultural planning (Aurbacher et al., 2013; Mubeen et al., 2019).

The CROPGRO Cotton model simulated crop yield very well with 
satisfactory mean percent difference values during the process of cali
bration and validation (Figs. 5 and 6). For cotton lint yield attributes, the 
CROPGRO Cotton model predicted a lesser mean percent difference 
between simulated and observed cotton yield with RMSE values 
(139.51–249.71), higher d-index (0.8 and 0.9), along with fair R2 (0.8 
and 0.9), respectively (Table 4). Similar results were reported by Mishra 
et al. (2021) and Mubeen et al. (2019) that the CROPGRO Cotton model 

simulated cotton yield very well with less difference between simulated 
and observed values under a semi-arid environment. The CROPGRO 
Cotton model could be used under different climates for simulation 
studies and mounting crop management activities (White et al., 2011). 
These results are similar to Adhikari et al. (2017) and Khatua et al. 
(2023), which reported that the CROPGRO Cotton model can predict 
cotton yield very closely under different environments.

The positive influence of increased nitrogen levels on cotton yield, 
particularly under RCP4.5, is well-documented. Nitrogen is a critical 
nutrient that enhances plant growth and resilience, enabling crops to 
withstand climatic stresses better. Wu et al. (2023) demonstrated similar 
trends, showing that appropriate nitrogen management significantly 
boosts cotton productivity under changing climate conditions. However, 
the diminishing returns of nitrogen application under RCP8.5 highlight 
a critical challenge. As climate conditions become more severe, the ca
pacity of nitrogen to offset the negative impacts on yield, necessitates 
additional adaptive measures. This observation is consistent with the 
findings of Zhao et al. (2017), who noted that the efficacy of nitrogen 
fertilization diminishes under higher temperatures and drought stress 
conditions.

These results suggest that no-tillage and appropriate nitrogen man
agement can significantly enhance cotton yield under moderate climate 
change scenarios, aligning with the findings of Singh et al. (2022), who 
demonstrated similar trends using the DSSAT cotton model. In contrast, 
under the RCP8.5 scenario, positive performance changes were limited 
to the second and third decades (Fig. 8a, b). The reduced effectiveness in 
the first decade highlights the heightened vulnerability of cotton yield to 
extreme climate conditions. These findings resonate with the work of 
Powlson et al. (2014), who noted that the benefits of no-tillage practices 

Fig. 8. Change (%) in cotton lint yield with recommended different nitrogen fertilizer levels (N0: control, N1: 33, N2:67, N3: 101 kg N ha− 1) under no-tillage (a) and 
conventional tillage (b) for two RCPs (4.5 and 8.5) under three time slice periods: first decade (2025–2035), second decade (2036–2046), and third 
decade (2047–2057).
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diminish under more severe climate scenarios.
Under RCP4.5, all models across the three decades demonstrated 

fewer negative changes in cotton yield with conventional tillage than 
no-tillage relative to their base yields, respectively. This suggests that 
conventional tillage is an effective strategy for mitigating the adverse 
impacts of moderate climate change. Conventional tillage likely helps to 
maintain soil moisture, reducing erosion, and enhancing soil structure, 
thereby buffering the cotton crops against climatic stresses (Haddaway 
et al., 2017). In contrast, under RCP8.5, the benefits of conventional 
tillage diminish in the second and third decades. The percentage 
changes in cotton yield under conventional tillage compared to 
no-tillage became more negative. This indicates that under more 
extreme climate scenarios, the protective effects of conventional tillage 
are insufficient to counteract the severe climatic stresses (Pittelkow 
et al., 2015; Powlson et al., 2014).

The reduced effectiveness of conventional tillage under RCP8.5 is a 
concerning trend. Extreme climate conditions, characterized by higher 
temperatures and more frequent droughts, can overwhelm the benefits 
provided by conventional tillage (Fig. 8a, b). Powlson et al. (2014) and 
Pittelkow et al. (2015) highlighted similar limitations, noting that while 
conventional tillage is beneficial under moderate stress, its advantages 
are less pronounced under severe climatic conditions. This suggests that 
conventional tillage alone may not be sufficient to mitigate the impacts 
of extreme climate change and should be integrated with other adaptive 
strategies. Rosenzweig et al. (2014) emphasized the necessity of a 
multifaceted approach to climate adaptation in agriculture, advocating 
for the combination of various practices to bolster crop resilience.

In RCP 8.5, the cotton lint yield across all three decades was 
consistently lower than in RCP4.5, regardless of nitrogen level (Fig. 8a, 
b). The decrease in crop yield in RCP8.5 compared to RCP4.5 could be 
attributed to various factors such as higher greenhouse gas emissions, 

more severe climate conditions, and/or reduced availability of resources 
like water or nutrients (Zhao, et al., 2017; Habib-ur-Rahman et al., 
2022). The RCP8.5 represents a scenario of higher greenhouse gas 
emissions and less effective mitigation efforts compared to RCP4.5, 
leading to more adverse environmental conditions that can negatively 
impact crop growth, development, and yield (Van Vuuren et al., 2011).

In both RCPs, the yield was higher in the first decade than in the third 
decade (Fig. 8a,b). Higher temperatures can have varied effects 
depending on the region. For instance, they might result in either an 
extended growing season with increased rainfall or reduced rainfall and 
a shorter growing period. The impact of higher temperatures can differ 
across regions. Conversely, elevated temperatures in cotton-producing 
areas and those already experiencing high temperatures may lead to 
adverse outcomes such as increased shedding of flower buds (Sharma 
et al., 2022).

Consistent with findings by Devkota et al. (2013), no-tillage practices 
often outperform conventional tillage, especially at higher nitrogen 
levels and over extended periods. Under RCP4.5, no-tillage resulted in 
higher yields across all nitrogen levels during the first decade and 
maintained superiority at higher nitrogen levels (N1 to N3) in subse
quent decades (Fig. 10a). Similarly, under RCP 8.5, no-tillage produced 
higher yields than conventional tillage at nitrogen levels N2 and N3 
across all decades (Fig. 10b). These results reinforce the benefits of 
no-tillage systems combined with optimal nitrogen management, 
aligning with the work of Watts et al. (2017), suggesting no-tillage as a 
sustainable practice to enhance cotton productivity in changing climate 
conditions.

Substantial differences were observed in the quantity of the simu
lated yield changes among the different GCMs and RCP combinations, 
contributing to uncertainty in yield projection under climate change. 
However, one consensus was that the yield change trends were negative 

Fig. 9. Comparison cotton lint yield between no-tillage (NT) and conventional tillage (CT) under different nitrogen (N0: control, N1: 33, N2:67, N3: 101 kg N ha− 1) 
for RCP4.5 (a) RCP8.5 (b) under three-time slice periods: first decade (2025–2035), second decade (2036–2046), and third decade (2047–2057).
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for different GCMs and RCPs. The strong agreement among the different 
GCMs and RCPs in projecting yield changes revealed some confidence 
that climate change might decrease future yields compared with his
torical climate data. These results are close to the findings in different 
regions of Jans et al. (2021), Arshad et al. (2021), and Chen et al. (2019).

The adverse impacts of climate change on productivity vary with 
events during different plant growth stages (Doherty, et al., 2003). 
Several studies have examined the impact of climate change on crop 
yields. For instance, Deryng et al. (2014) projected that global cotton 
yields could decrease by 20 % under high-emission scenarios due to 
increased temperature and water stress. Similarly, Zhao et al. (2017)
reported that cotton yields will likely decline in many regions due to 
climate change, with significant variations depending on local condi
tions and adaptation measures.

The findings of this study align with these broader trends, showing 
initial increases in yield followed by declines as climate impacts inten
sify. Specifically, under the RCP4.5 scenario, all models indicate positive 
yield changes in the first decade under both conventional tillage and no- 
tillage conditions. However, the sustainability of these gains diminishes 
in subsequent decades, particularly under the more severe RCP 8.5 
scenario, where negative yield changes become predominant.

The consistent decline in cotton yields over time, particularly under 
the RCP8.5 scenario, highlights the need for robust adaptation strategies 
(Fig. 10). The findings indicate that performance changes in cotton yield 
under the RCP8.5 scenario were more negative compared to the RCP4.5 
scenario across all decades. This aligns with expectations, as RCP8.5 
represents a high greenhouse gas emissions trajectory leading to more 
severe climate impacts. In contrast, RCP4.5 represents a more moderate 
emissions scenario with less severe climate impacts (Challinor et al., 
2014). The consistent trend of more negative changes in RCP8.5 un
derscores the increased vulnerability of cotton yields to higher green
house gas concentrations and associated climatic changes.

Cotton yield in the third decade decreased more than in the first 
decade across all models. This suggests a worsening trend over time, 
highlighting the cumulative adverse effects of climate change on cotton 
productivity (Li et al., 2020). As climate conditions progressively 
worsen, it is evident that cotton yields are increasingly compromised, 
which could have severe implications for agricultural sustainability and 
food security in the long term (Wang et al., 2018).

These results highlight the importance of considering both climate 
scenarios and agricultural practices when planning for future agricul
tural resilience in cotton production in the north Cotton Belt.

5. Conclusion

In this experiment, the effects of climate change over three decades 
(2025–2035, 2036–2046, and 2047–2057) based on 5 GCMs under two 
RCPs on cotton lint yield were analyzed in a humid subtropical region of 
the north Cotton Belt through the aid of a well-calibrated and validated 
CROPGRO Cotton model. Projected future climate change showed 
increased temperature and decreased precipitation under both RCP4.5 
and RCP8.5 in all three decades.

This study demonstrates a consistent improvement in cotton yield 
with increasing nitrogen levels from 0 up to 101 kg N ha− 1 under both 
RCP4.5 and RCP8.5 scenarios over the next three decades. Cotton yield 
peaked in the first decade but declined across all nitrogen levels there
after. The comparison of RCP4.5 and RCP8.5 reveals varying impacts on 
cotton productivity, with RCP4.5 generally outperforming RCP8.5 
across the four nitrogen levels and three decades.

The study demonstrates that increasing nitrogen application signif
icantly enhances cotton yields under both conventional tillage and no- 
tillage systems in RCP4.5 and RCP8.5 scenarios and the magnitude of 
yield increase was lower under RCP8.5 than RCP4.5. Notably, no-tillage 
practices frequently result in higher yields than conventional tillage, 

Fig. 10. Relative changes in the mean cotton lint yield under five GCMs models (FIO-ESM, GFDL-ESM2M, HADGEM2-ES, IPSL-CM5A-MR, MRI-CGCM3) to historical 
cotton yield with conventional tillage (a) and no tillage (b) under RCP4.5 and RCP8.5.
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especially at higher nitrogen levels and over extended periods. These 
findings suggest that adopting no-tillage practices with optimized ni
trogen management could be a viable strategy for improving cotton 
productivity under changing climate conditions.

Cotton yields under all five GCMs experienced consistent negative 
changes from the first decade to the third decade regardless of the tillage 
system and RCP. Overall, the magnitude of yield reduction was more 
pronounced under RCP8.5 than under RCP4.5. The five GCMs predicted 
varying impacts of future climate change on cotton yield regardless of 
RCP and decade, contributing to uncertainty in yield projection under 
climate change. The GFDL-ESM2M under conventional tillage and 
HADGEM2-ES under no-tillage predicted lower yield than the other 
GCMs under RCP4.5 and MRI-CGCM3 forecasted lower yield than the 
other GCMs under RCP8.5 for both tillage systems. However, a 
consensus lay in that the yield change trends were negative from the first 
decade to the third decade for all GCM and RCP combinations, which 
revealed confidence that climate changes decrease cotton yield in the 
north Cotton Belt from 2025 to 2057. Hence, the findings of this study 
will help not only understand the future climate change in the region but 
also see the adoption of climate-smart adaptation options in the future.
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