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wave projections in the CONUS
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Heat waves are a well-documented hazard that are projected to increase in intensity, duration, and
frequency with climate change. Regions of the US experience widely varying temperatures; for
example, 35 °C is extremely hot for spring in the Northeast but not for summer in the Southeast. It is
important to evaluate projections within a regional context and at a high enough resolution to
understand the risks to populations. We identify heat waves across the Conterminous US (CONUS)
under SSP5–8.5 from 2020 to 2059 with an ensemble of dynamically downscaled Coupled Model
Intercomparison Project Phase 6 (CMIP6) model outputs. We demonstrate that there are regional
differences caused by seasonal and local drivers of persistent hot temperatures. Summer heat waves
are increasing in intensity and duration faster than winter heat waves because of the atmospheric
conditions that promote these events. Our analysis emphasizes the value of fine-resolution modeling
for projecting future climate risks.

As the Intergovernmental Panel onClimateChange (IPCC) 6thAssessment
Report states, hot extremes such as heat waves will become more intense,
more frequent, and lengthier due to climate change1–5. The societal dis-
ruption caused by heat waves exacerbates a looming health crisis driven by
climate change, especially for vulnerable segments of the population—the
youngest, the oldest, and the homeless6,7. Heat waves can cause a range of
health impacts: heat stress, heat exhaustion, heat stroke8, and increased risk
of heart attacks, strokes, and other cardiovascular diseases9,10. Additionally,
heat waves can cause significant financial loss from power outages and
disruption to public infrastructure11,12. While the general impact of heat
waves is clear13, the development and specific risks of future heat waves to
regions of the US remain limited by coarse-resolution model outputs.

To studyhowheatwavesmay evolve in the future, projectionsmade by
global climatemodels (GCMs)providephysics-based insights. TheCoupled
Model Intercomparison Project Phase 6 (CMIP6) coordinates the latest
generation of GCM experiments worldwide using common protocols, cli-
mate forcings, and output formats to provide intercomparable future cli-
mate predictions14. O’Neill et al. (2016) described the design of CMIP6
emissions scenarios that combine a representative concentration pathway
(RCP) with radiative forcing levels between 1.9 and 8.5W/m2 and a
Socioeconomic Development Pathway (SSP 1–5). Among the scenarios, we
consider the “worst-case” SSP5–8.5 to investigate the upper bounds of what
the US could experience. RCP8.5 has been widely used in other studies to
investigate potential climate change impacts5,15–17.

However, the raw spatial resolution of GCMs is coarse and cannot
resolve fine-scale processes to support regional (e.g., state-level and county-
level) risk assessment and decision-making18. Suitable downscaling techni-
ques, either dynamical or statistical, are required to refine the projection at a
finer spatial resolution. Statistical downscaling uses observations of the
modeled phenomenon during a reference period to build a statistical rela-
tionship and then apply it to future events19. It is computationally inexpensive
and widely used but limited only to variables with long-term historic obser-
vations. It also relies on the premise that the relationship between observed
andmodeled eventswill remainunchanged in the future,whichmaynot hold
as climate change disrupts previously consistent processes20. Dynamical
downscalinguses regional climatemodels to incorporate the effects of climate
processes with respect to future emission scenarios to estimate local impacts.
It is more computationally intensive and requires several sub-daily GCM
outputs. Using a new dataset20 that provides dynamically downscaledCMIP6
outputs, we explore the regional evolution and driving mechanisms of near-
future heat waves in the US projected by the latest GCMs.

The IPCC defines a heat wave as an extreme weather event often
associated with climate change21. There are numerous ways to quantify heat
waves according to the research purpose and domain11,22–28. The heat wave
duration index (HWDI) defines a heat wave as the total period >5 con-
secutive days with a maximum temperature >5 °C above the historical
normal daily maximum temperature value29. While it is a useful approach
for exploring deviations from normal values, a fixed threshold of 5 °C is not
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applicable in all regions30. The heat wavemagnitude index (HWMI) defines
a heat wave as at least 3 consecutive days where the daily maximum tem-
perature exceeds the 90th percentile threshold of the average of a 31-day
referencewindowduring 1981–202031. Researchers useda similar definition
to analyzeheatwave occurrenceswith varying numbers of consecutive days,
temperature scales, thresholds, and reference windows32–34. Because the
length of the reference window and the percentile threshold can easily be
changed, we use the HWMI to reach a more comprehensive view of future
heatwaves by varying the percentile threshold. TheHWMIhas beenused to
holistically examine the entire evolution of a heat wave, rather than looking
only at individual characteristics with no spatiotemporal consideration35.

We include winter heat waves in our analysis rather than limiting our
work to the more commonly studied summer heat waves. Because winter
heat waves (or “warm spells”) receive less attention compared to summer
heat waves36, the negative side effects of warm winters can be under-
estimated. Biogeochemical and carbon cycles can be interrupted by these
warm spells and this results in increased nitrogen leaching37 and carbon loss
from respiration38, which feeds into a positive feedback loop of worsening
climate change. Additionally, increased temperatures can influence yearly
snow accumulation, which is a challenge for farming domestic food staples
that rely on a steady water supply39–42.

This research aims to understand how regional heat waves, an urgent
climate hazard, may evolve across the Conterminous US (CONUS) in the
near-term future using a newly released dataset with downscaled CMIP6
projection. Our work emphasizes the importance of fine spatial and tem-
poral resolution for regional-scale projections and demonstrates that
dynamical downscaling, though computationally intensive, can lead to
reliable results for the purpose of human health, ecosystem, crop damages,
and other regionally focused impact assessments.

Results
Historically (1980–2019), summer heat waves lasted an average of
2.6 ± 0.4 days andwinter heatwaves lasted 2.7 ± 0.5 days (Fig. 1). In the near
future, however, under SSP5–8.5 summer heatwaves are projected to last an
average of 4 ± 0.6 days and winter heat waves are projected to last
3.7 ± 0.6 days (Fig. 1). The average duration of heat waves is not constant
across the US; future summer heat waves are projected to last 9–12 days on
average in the South and Southwest while winter heatwaves are projected to
last 9–12 days on average in the Northern Midwest and Rocky Mountain
regions.

A Mann–Kendall test on the summer dataset returns a tau value of
0.705 (p < 0.01), indicating that there is a statistically significant trendof heat
waves lasting longer over the 80-year length of the time series. The same
statistical test for winter heat waves returns a tau value of 0.544 (p < 0.01),
indicating that there is a positive trend in future winter heat waves, as well.

The average temperature of historical summer heat wave days is esti-
mated to be 34.9 °C across the CONUS and the average temperature of
historical winter heat wave days is estimated to be 24.7 °C (Fig. 2A). The
average temperature of future summer heat wave days is estimated to be
35.4 °C across the CONUS and the average temperature of future winter
heat wave days is estimated to be 25.2 °C. The regions experiencing the
highest temperatures on these days are consistently in the South and
Southwest during both summer and winter (Fig. 2B).

A Mann–Kendall test on the summer dataset returns a tau value of
0.702 (p < 0.01), indicating that there is a statistically significant trendof heat
waves becoming hotter over the length of the time series. The same analysis
for winter heat waves returns a tau value of 0.623 (p < 0.01), indicating that
there is a positive trend in future winter heat wave temperatures, as well.

The number of heat wave events in a given year is projected to increase
in the near future for both summer and winter heat waves (Fig. 3). This
metric of a number of events is a count of the number of distinct (separated
by more than a day) heat waves as calculated with a 95th percentile index
that persist longer than 3 days in any given location.

Thenumber of projected futureheat-wave-person-days in theCONUS
under SSP5–8.5 is shown in Fig. 4. This is a calculation based on heat-wave

days that meet the given threshold (85th, 90th, or 95th percentile of his-
torical temperatures) for at least 3 days. The population under SSP5–8.5 is
projected to steadily increase, so this measurement is primarily driven by
variations in annual heat wave days. The different thresholds for which
events are counted as a heat wave (shown in red, blue, and black) demon-
strate that while the population affected by extremely hot days will change
depending on the level, the trend is still increasing quickly and in a con-
cerning direction from a public health perspective.

Discussion
While the average duration of heat waves in the CONUS is projected to
increase over the next 40 years in both the summer and winter (Fig. 1A),
these averages are primarily drivenby large increases in just a few regions. In
the summer, the Southwest and the South could see a tripling in the average
duration of heat wave events even with the most conservative percentile
threshold (95th) whereas regions that are not soil-moisture-limited do not
show such a dramatic change (Fig. 1B). This emphasizes the importance of
the interaction between soil moisture and temperatures where once soils
become dry enough, there is a shift in the sensitivity of daytime maximum
temperatures and radiative energy at the soil surface becomes sensible heat,
deviating from the expected linear trend in soil moisture and temperature43.
This is clear when comparing the southwest to the southeast, which is not
projected to have the samemagnitude of increase in heat waves even though
it is at the same latitude, primarily because it is much more humid44.

Heat wave temperatures are projected to steadily increase throughout
the CONUS (Fig. 2A), althoughwith large regional and seasonal differences
(Fig. 2B). Temperatures are generally hotter at lower latitudes and eleva-
tions, and the midwestern and southeastern “warming hole”45 no longer
persists to the same extent in future projections. While increased irrigation,
reforestation, and ocean–atmosphere circulation patterns have historically
combined to minimize summertime warming in this region46–48, those
forcings will no longer be enough to counteract the extreme warming
projected under SSP5–8.5. However, it is also possible that the CMIP6
models are in fact underestimating the atmospheric circulation-induced
cooling that could offset heating trends49, despite the downscaling and bias
correction with Daymet. However, the overall spatial pattern of tempera-
tures remains consistent in the projected future as in the past, even though
the magnitude is greater. Regions that historically have remained cooler,
such as coastal locations that are cooled by proximity to ocean water50 do
tend to remain cooler than inland areas in the future as well.

The number of heat wave events in a given year is increasing. This
means that either events are becomingmore common or a single long event
is now being broken up by a day of cooler temperatures; looking at the
increase in the total number of heat wave days in a season (Fig. 4) as well as
the increasing duration of events (Fig. 1) points to the increasing frequency
of heat waves rather than the disruption of heat wave events by cooler
temperatures as the cause. Figure 3B demonstrates that this heat wave
persistence is anomalously high along the coastlines in the summer. In
particular, Florida is expected to experience 4 times as many heat waves
during the summer in the near future relative to the recent past (Fig. 3B).
This is corroborated by other recent literature51–53 that explains that heat
waves in Florida are particularly impacted by a flattening temperature
distributionwhere a small increase in temperature results in a large increase
in events that qualify as heatwaves, therefore increasing heatwave duration.
Heatwaveduration or persistence is particularly importantwhen evaluating
the long-term impacts of heat waves and deciding which areas need
improved management and mitigation plans54,55.

Winter heat waves are also projected to increase in intensity, duration,
and frequency in the near future (Figs. 1–3). These warm spells have been
shown to interrupt cold stratification, a process in seeds that is required for
germination56, and impact the temperature of streams that function as
important winter habitats57. Additionally, warmer winters mean that less
precipitation will fall as snow, reducing the reliability of snowpack as an
input to streamflow and increasing interannual variability, exacerbating
droughts, particularly in areas like the westernUS that rely on snowpack for
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streamflow in the summer58–60. The spatial pattern of winter heat wave
duration ismarkedlydifferent (Fig. 1B), although thedurationofwinterheat
waves is also increasing on average (Fig. 1A). There are two regions pro-
jected to have large increases in duration—theWestern US, near the Rocky
Mountains, and the Upper Midwest, near the Great Lakes. The Rocky
Mountain region is likely influenced by the high altitude of the mountains

that disrupt zonal air mass transport61. Similarly, in the Upper Midwest,
warm air advection ofwarm terrestrial air62 can cause extremely intense and
long-lasting heat waves63.

Summerheatwaves are increasing in intensity andduration faster than
winter heat waves (Figs. 1–3). Summer heat waves are primarily driven by
atmospheric blocking where convection is suppressed and heat builds up at

Historical (1980-2019), Summer Future (2020-2059), Summer

Historical (1980-2019), Winter Future (2020-2059), Winter

Days

Days

B

Fig. 1 | Historical and future projected heat wave duration in the CONUS. AThe average duration of a heat wave in the CONUS is projected to increase in the near future.
B The average duration of a heat wave in the CONUS varies by region.
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the surface, causing adiabatic warming to occur and a build-up of sensible
heat64–66. In the summer, local conditions such as soil moisture tend to be
more impactful in terms of heat wave formation, particularly in the interior
CONUS, away from coastlines67. The blocking anticyclones that form and
tend to promote these conditions are associated with warmer surface

conditions. Futurewinterheatwave temperatures aremoreuncertain, as the
models do not agree nearly as well as they do when projecting summer heat
wave temperatures. This occurs because in thewinter, soilmoisture has little
impact, and large-scale factors like Pacific Ocean sea surface temperature
cause cyclone and anticyclone formations that impact temperatures far

Historical (1980-2019), Summer Future (2020-2059), Summer

Historical (1980-2019), Winter Future (2020-2059), Winter

B

°C

°C

Fig. 2 | Historical and future projected average temperature of heat wave days in the CONUS. AThe average temperature of heat wave days in the CONUS is projected to
increase in the near future. B The average temperature of heat wave days in the CONUS varies by region.
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fromthe coast67.Winterheatwaves tend tobe causedbywarmair advection,
although atmospheric blocking also plays a role in starting the warm air
advection65,68. That means that indices that can be used to predict summer
heat waves from related variables such as soil moisture and cloud cover will
not perform as well in the winter because of the lack of coupling between

these local-scale variables and the temperatures; this demonstrates the
importance of using a model that incorporates large-scale atmospheric
circulation.

It is not only large-scale land–atmosphere dynamics that contribute to
heat waves. The feedback between land cover change and temperatures

Fig. 3 |Historical and future projected heat wave events in theCONUS.AThe number of events in a given year is increasing.BThere are large differences in the number of
events projected in the near future by different regions of the USA.
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means that urban areas experience hotter conditions69. This connection has
important implications for thepopulations at risk. Earlier,more intense, and
longer heat waves are associated with higher mortality risk, with a 2.49%
increase in mortality associated with every 1 °F increase in intensity and
0.38% for every1-day increase induration70.Our results show that across the
US even with the most conservative threshold (95th percentile), there is
projected to be an increase from 170 million heat wave person-days to 550
million heat wave person-days.While this increase is driven partially by the
linear increase in population projected under SSP5–8.5, the location of
populations also matters in determining risk.

There are numerous heat wave indices in existence and comparisons
can lead todiffering conclusions in the same region71. But evenwithdifferent
percentile thresholds, there is projected to be a sizeable increase in the
number of people experiencing heat wave days in the near future (Fig. 4).
Despite this clear risk, predicting heat waves alone may not be enough to
establish human health impacts. Heat waves can also be more deadly when
they are humid heat waves—when temperatures rise but humidity remains
constant—because this increases heat stress and limits the body’s ability to
use evaporative cooling to maintain homeostasis72,73. On the other hand,
heat waves commonly occur at the same time as droughts, leading to greater
mortality and environmental impacts from the compound event74.

One further concern is that downscaling daily maximum temperature
projections becomes more challenging under greater warming conditions,
during the summer, and in someparticular geographic areas such as regions
with steep elevation changes75,76. For example, steep elevation can cause local
weather conditions to differ from the surrounding area and observations
may not capture this effect, making it hard to constrain a model. In fact,
downscaling contributes substantial uncertainty to future climate estimates,
particularly when projecting extremes, in regions with complex terrain, or
where historical observations do agree77.

We evaluate near-future heat waves in the US under SSP5–8.5 with an
ensemble of 6 dynamically downscaled CMIP6 GCM. Our work demon-
strates that while the entire region is expected to experience an increase in
intensity, duration, and frequency, there aremeaningful regional differences
caused by different regional and seasonal drivers of persistent hot tem-
peratures. We show that while summer heat waves are increasing in
intensity and duration faster than winter heat waves because of differences
in the atmospheric conditions that promote these events, winter heat waves
are still projected to increase in intensity, duration, and frequency in thenear
future. In particular, regional- and local-scale meteorological patterns are
very important; dynamical downscaling can resolve these fine-scale

processes and offer high-resolution projections of climate risk in the near
future. These changes in heat wave patterns are projected to increase the
number of people at risk as the US population grows if people do not take
climate risk into account when deciding where to live.

Methods
Six CMIP6 GCMs under SSP5-RCP8.5 (Table S1) were selected given
their model performance78 and availability of 6-hr data to support
dynamical downscaling. Dynamical downscaling was done using the
fourth version of the Regional Climate Model system (RegCM4) which
relies on physics-based models and provides a large suite of physically
consistent variables79, and it refines the horizontal resolution from
GCM’s original resolution (>150 km) to 25 km across the CONUS20. A
daily bias correction was then performed on RegCM4 output using
Daymet observations and it further refines the spatial resolution from
25 km to 1/24° (~4 km).

We calculated the heat wave magnitude index31 and used the daily
maximum temperatures during the 40-year reference period to calculate the
85th, 90th, and 95th percentile threshold, with a 31-day reference window.
Each heat wave event was only classified as such if it lasted at least three
consecutive days; for example, a 2-day period of greater than the 95th
percentile of historical daily maximum temperatures would not qualify as a
heatwave.Wecalculatedanensemblemeanof the sixCMIP6models (Table
S1) using raw and downscaled outputs for both historical (1980–2019) and
near-term future (2020–2059) periods for the entire study area.

We also performed aMann–Kendall test80,81 to determine if there is an
upward or downward trend in duration, temperature, and the annual
number of heat waves throughout the study time period, from1980 to 2059.

Data availability
All data used in this study are publicly available. The CMIP6 models were
from the Earth System Grid Federation (ESGF, https://aims2.llnl.gov/
search). Daymet Version 4 is available through the Oak Ridge National
Laboratory (ORNL) Distributed Active Archive Center (DAAC) (https://
daymet.ornl.gov/). TheNClimGrid dataset is available through theNOAA-
NCEI website (https://www.ncei.noaa.gov/access/metadata/landing-page/
bin/iso?id=gov.noaa.ncdc:C00332). PRISM is available from the PRISM
ClimateGroup atOregon StateUniversity (https://prism.oregonstate.edu/).
All data analysiswas doneusing theRprogramming language77 andClimate
Data Operators82. For access to the RegCM4 ensembles, please contact the
corresponding author.

ACCESSS-CM2
BCC-CSM2-MR
CNRM-ESM2-1
MPI-ESM1-2
MRI-ESM2-0
NORESM2-MM
ENSEMBLE (85TH)
ENSEMBLE (90TH)
ENSEMBLE (95TH)

Fig. 4 | Projected future heat wave person-days in the US under SSP5-8.5 with 85th, 90th, and 95th percentile thresholds.
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