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Abstract: Accurate and timely weather forecasts and air quality predictions are essential for 

designing effective strategies to manage weather-related events and air pollution. These forecasts 

also play a key role in understanding aerosol-meteorology interactions within weather systems. 

However, traditional numerical methods, such as chemical transport models (CTMs), are 

computationally intensive, and their high resource demands limit their practical use in real-time 

air quality management and weather forecasting. In response to these challenges, we develop a 

novel approach called DeepCTM4D, which leverages deep learning to replicate CTM simulations, 

enhancing the computational efficiency of meteorology and air quality modeling in the four-

dimensional chemistry space. The DeepCTM4D model is trained to accurately predict atmospheric 

chemical concentrations based on inputs such as precursor emissions, meteorological factors, and 

initial conditions. The key advantage of DeepCTM4D lies in its ability to efficiently identify the 

main drivers of pollution formation and assess how changes in emissions and meteorological 

conditions influence air quality. The relationships between emissions, meteorology, and 

concentration that DeepCTM4D captures align with established atmospheric chemistry 

mechanisms, further supporting the model’s scientific validity. Overall, DeepCTM4D offers a 

promising solution for simulating complex atmospheric processes, providing policymakers with 

critical information needed to design effective pollution control strategies and weather-caused 

events. This AI-driven model can also be integrated into global weather and air quality forecasting 

systems, serving as a powerful tool for more efficient, real-time predictions. 
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1 INTRODUCTION 

In the context of global climate change, weather forecasts and atmospheric management face 

significant challenges due to inefficient and inaccurate predictions of extreme events such as air 

pollution, and weather anomalies. The complexity of chemical interactions makes it difficult for 

traditional numerical models to provide timely and accurate estimates in weather forecasts and air 

quality prediction, which require better processes for dynamics, physics, and chemistry. 

Addressing the challenges demands a more efficient approach to enhance the model speed and 

forecast accuracy. 

Advanced machine learning methods effectively capture the complex, nonlinear relationships 

within the atmospheric system (Cabaneros et al., 2019; Kelp et al., 2020; Xing et al., 2020) and 

offer great potential for predicting atmospheric chemical concentrations using emissions and 

meteorological data much efficiently by avoiding the computationally intensive processes of 

traditional chemical transport models (CTMs). However, limitations arise from the chaotic nature 

of the atmosphere, where small errors grow over time, leading to significant biases during long-

term forecasts with frequent spatial interactions. Additionally, these models require handling large 

datasets, straining memory, and computational resources. Uncertainties in initial conditions and 

emission estimates from traditional models can also affect prediction accuracy. Our previous work 

has advanced the development of the deep-learning-based CTM (DeepCTM) across various 

domains in East Asia and over the contiguous United States (CONUS). Progressing from the 

ResNet (Xing et al., 2020) to UNet-LSTM (Huang et al., 2021; Xing et al., 2022), and most 

recently to the ConvLSTM (Xing et al., 2024), the model has evolved significantly. It is now able 

to address long-term error propagation, manage memory demands for multiple VOC/PM species, 

update emissions efficiently, and integrate near-real-time data from ground-based and satellite 

observations (Xing et al., 2022). However, our previous work has not fully incorporated vertical 

information into the system. While vertical profiles have been studied recently for NO2 (Li and 

Xing, 2024), they have not yet been explored for other species such as O3 or PM2.5. Additionally, 

the multiple species in VOC and PM emission profiles have not been adequately considered in 

previous model designs. Here we propose a new model structure of four-dimensional DeepCTM 

(DeepCTM4D) to address the above limitations. 

 

2 DATA AND MODEL 

2.1 Training data 

We leveraged hourly, spatially-resolved input and output data from simulations of the US EPA 

Community Multiscale Air Quality model (CMAQ) (Appel et al., 2013) over the U.S. 12 km 

Continental US (CONUS) domain for 2019 and 2020 to train the model.  

The feature inputs to DeepCTM4D will mostly remain the same as in previous applications. 

The emissions data include layer-specific profiles for five species: NOx, VOC, SO2, NH3, and 

PM2.5, with plume-rise effects accounted for point sources. The meteorological data including 3D 

variables of U- and V-winds (UW, VW), water vapor (QV), cloud water mixing ratio (QC), air 

temperature (TA), mid-layer height above ground (ZH), 3D resolved cloud fraction (CRFAC), and 

air pressure (PRES), as well as 2D variables crucial for simulating near-surface chemical 

dispersion and chemistry, including planetary boundary layer height (PBL), 10-meter wind speed 

(WS), short-wave radiation (SWR), convective velocity scale (WSTAR), 2-meter temperature 

(T2), humidity (Q2), Leaf Area Index (LAI), and vegetation coverage (VEG). These variables are 

input at corresponding hourly intervals to ensure temporal alignment with model requirements. 

Additionally, we incorporate static geographical data, such as terrain height (HT), land-water 
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mask, and land use category, which will provide spatial context that remains consistent over time. 

This will support more accurate predictions of air pollutant dispersion in relation to topographical 

features. The prediction targets six key chemical species: NO2, formaldehyde (FORM), O3, SO2, 

NH3, and PM2.5. For training, we used data from the 1st to the 25th day of each month, leaving the 

remainder for testing. 

We employed data augmentation by randomly cropping feature maps to a size of 60 rows by 60 

columns. This approach prioritizes local spatial dependencies, reflecting the fact that atmospheric 

processes typically occur within a limited spatial range over a relatively short period of time (i.e., 

one hour). Random cropping increases sample variability, improves model focus on localized 

patterns, and significantly reduces memory requirements by avoiding the use of full high-

resolution maps. The training process optimizes Mean Squared Error (MSE) as the loss function 

over 5000 epochs, a duration empirically determined to ensure robust performance on both training 

and testing datasets. The learning rate initiates at 0.001 and decays linearly to zero by the end of 

training, supporting stable convergence. We employ the Adam optimizer (Kingma and Ba, 2014) 

to enhance model convergence. 

 

2.2 The DeepCTM4D Model 

To address the spatiotemporal variation of atmospheric chemical concentrations, 

meteorological, and topographical variables, we used a hybrid model combining 3D-ResNet (Tran 

et al., 2018) and ConvLSTM (Shi et al., 2015) architectures (Figure 1). Such design aligns closely 

with the governing physical principles of atmospheric processes, effectively capturing both spatial 

and temporal dependencies in the data. Particularly, the 3-D CNN leverages surrounding 

information from both horizontal and vertical neighborhood grid cells, capturing interactions 

between downwind/upwind and upper/lower areas.  

In the ConvLSTM structure, the concentrations predicted in the previous time step serve as 

initial conditions for forecasting concentrations in the subsequent hour. This approach enables 

DeepCTM4D to make predictions based on past predictions, introducing a temporal dependency 

that reflects the chemical variations driven by atmospheric physics (Xing et al., 2024). This design 

aligns with the continuity of atmospheric processes, which modulate concentrations over short 

intervals, such as one hour, by considering the two roles of previous-hour concentration (IC) in the 

model structure: 

(1) Perturbation Baseline: modulated based on changes (perturbations) resulting from 

atmospheric dynamics estimated within the ConvLSTM cell and added to the initial concentration.  

(2) Atmospheric Processes Integration: passed into the ConvLSTM cell, where it interacts with 

meteorology variables, to simulate atmospheric physical and chemical processes. 

 

 
Figure 1. The DeepCTM4D for predicting the following hour’s concentration 
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As a result, the prediction for the upcoming hour is closely linked to the prediction for the 

previous hour, simplifying the training process and enhancing the model’s stability. The hidden 

layers in ConvLSTM retain historical information, helping to mitigate error propagation during 

predictions over relatively long periods. 

To address the numerous VOC and PM species in their emission profile, we leveraged the 

encoder-decoder architecture in DeepCTM to effectively reduce the number of VOC species and 

PM components by compressing them into a limited set of latent variables. The encoder processes 

the original species, condensing them into a compact latent space for calculating concentrations in 

the next time step. The decoder then reconstructs the original species from these latent variables 

in the output (see Figure 2). This approach significantly improves training efficiency and reduces 

the computational burden, enabling the model or CTM to handle chemical species more effectively 

without processing each individually.  

 

 
(a) illustrate the auto-encoder structure 

 

 
(b) performance in decoding the VOC emission profile by states (using 2 latent variables to 

represent the original 33 VOCs, the red number represents the R2) 

Figure 2. Using Auto-encoder to compress the VOC/PM species number 
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Figure 2b illustrates an example where two latent species, compressed from the original 33 

VOC species, are used to decode back to the original 33 VOC species using an autoencoder model. 

The well-trained autoencoder model effectively identifies the dominant species in each state and 

reconstructs the original 33 VOC species with high accuracy, achieving an R² value close to 1. 

 

3 RESULTS 

3.1 Predicting the surface concentration across time 

The performance of DeepCTM4D in predicting surface concentrations of six species is given 

in Figure 3. Overall, DeepCTM4D effectively captures the temporal variations, achieving strong 

performance, with RMSE of 0.08 ppb, 0.04 ppb, 0.02 ppb, 0.1 ppb, 0.05 ppb, and 0.04 µg m-3 for 

NO2, HCHO, O3, SO2, NH3 and PM2.5 respectively. 

The RMSE is quite similar on both the training and test datasets, for all species demonstrating 

the model’s generalization ability in predicting a different day that is not included in the training 

dataset. 

 

 

(a) NO2 (ppb) (b) HCHO (ppb) (c) O3 (ppb) 

   

(d) SO2 (ppb) (e) NH3 (ppb) (f) PM2.5 (µg m-3) 

   

Figure 3. Performance in predicting time series for hourly surface concentration across one 

month (the first 25 days for training and last 5 days for testing, the red number represents RMSE; 

reinitialize every day; domain average in January 2019) 

 

3.2 Predicting the surface concentration across horizontal space 

 

Figure 4 compares the DeepCTM4D-predicted spatial distribution of six key species with 

CMAQ simulations, taking one day as one example (January 6, 2019, for NO2, SO2, and PM2.5; 

and July 6, 2019, for HCHO, O3, and NH3). 

The model is initialized at hour 0 and predicts the following 24 hours. In the first hour, 

DeepCTM4D provides predictions very close to CMAQ, as the changes within one hour are 

minimal and primarily influenced by the initial conditions used as input. Over time, DeepCTM4D 

continues to produce spatial patterns closely resembling those of CMAQ for all species, 
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demonstrating its capability to capture concentration modulations driven by emissions and 

meteorological factors. 

The R is larger than 0.6, 0.4, 0.7, 0.5, 0.5, and 0.7 for NO2, HCHO, O3, SO2, NH3, and PM2.5 

respectively, across the 24-hour prediction. 

 

 

(a) NO2 (ppb) (b) HCHO (ppb) 

  
(c) O3 (ppb) (d) SO2 (ppb) 

  
(e) NH3 (ppb) (f) PM2.5 (µg m-3) 

  
 

Figure 4. Performance in predicting spatial distribution of surface concentration across a day 

 

3.3 Predicting the vertical profiles 

 

The DeepCTM4D-predicted vertical profiles of NO2, O3, and PM2.5 were further investigated 

by comparison with CMAQ. Overall, the model successfully captures the vertical distribution of 
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these species, particularly the high concentrations near the ground for NO2 and PM2.5, which 

decrease with height, and the opposite trend is observed for O3, with a high R2 value close to 1. 

However, the model faces challenges in reproducing the top layers, where larger discrepancies 

are observed for NO2 and PM2.5. This may require future improvements, such as adding additional 

constraints on the top layer for these species. 

 

(a) NO2 (ppb) (b) O3 (ppb) (c) PM2.5 (µg m-3) 

   
Figure 4. Performance in predicting vertical profiles (January 6 GMT 1:00; the WRF-CMAQ 

model defines 35 vertical layers, corresponding to approximate heights of 20, 70, 120, 180, 250, 

320, 380, 400, 490, 660, 800, 920, 1,140, 1,400, 1,700, 2,100, 2,800, 3,500, 3,900, 4,300, 4,800, 

5,200, 5,600, 6,100, 6,700, 7,200, 7,800, 8,400, 9,000, 9,600, 10,000, 11,000, 12,000, 13,500, 

and 15,000 meters above ground level) 

 

3.4 Identify the contributors to the prediction  

 

 
Figure 5. Contributors to the surface O3 concentration along with prediction time 

 

 

Day 1

Day 2

Day 3

Day 4

Jan Jul

https://journals.flvc.org/aimlrb/


 

 

AI, ML, & Robotics in Business. 2025, 1(1), 52-61 https://journals.flvc.org/aimlrb/ 

We further investigated the contribution of each feature to changes in concentrations and its 

variation over the prediction period. This was done by modulating each feature—reducing it by 

20% (reducing T2 by 2°C)—and calculating the difference from the baseline as the feature’s 

contribution. As an example, we present O3 predictions for one day in January and one in July. 

Overall, the initial condition has the largest impact but diminishes over time, as the lifetime of 

O3 is long and the concentration in the next hour is similar to the previous one. NOx emissions 

start to exert a notable influence, with negative impacts on O3 in winter and positive impacts in 

summer, reflecting the nonlinear chemistry of O3 transitioning from VOC-limited to NOx-limited 

regimes. LAI/VEG has a negative impact due to dry deposition, as increased vegetation enhances 

the O3 sink through this process. Meteorological variables show either negative or positive impacts. 

These results reveal the complex interactions among emissions, meteorological variables, and 

concentrations. The DeepCTM4D model effectively captures these dynamics and reproduces 

variations in O3 concentrations driven by these factors.  

 

4 CONCLUSION 

This study presents a novel method, DeepCTM4D, which utilizes deep learning by integrating 

a 3D-ResNet with ConvLSTM to emulate CMAQ simulations for four-dimensional air pollution 

concentrations across space and time. This approach significantly enhances the computational 

efficiency of atmospheric chemistry modeling. An application over the CONUS domain 

demonstrates that DeepCTM4D can accurately reproduce CMAQ simulations for six key species, 

capturing variations across time, space, and vertical profiles. These advancements position 

DeepCTM4D as a robust tool for operational forecasting systems, improving atmospheric 

chemistry predictions, weather feedback, and overall modeling efficiency and accuracy. 

Future applications of DeepCTM4D could involve coupling with meteorological weather 

forecasting to enhance air quality and weather predictions across short-term, sub-seasonal, and 

long-term scales. Additionally, by integrating observational data from satellites and ground-based 

measurements, the model could deliver accurate and efficient predictions to support targeted 

strategies for addressing air pollution and climate challenges at local scales. This capability would 

contribute to global efforts to mitigate climate change, improve environmental health, and foster 

sustainable development. In addition to the conclusions above, GPU and memory resources are 

crucial for enhancing the efficiency and accuracy of weather and air quality forecasts, especially 

when handling large datasets during training. 
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