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ARTICLE INFO ABSTRACT

Sub-seasonal weather prediction remains a significant scientific challenge due to the chaotic nature of the at-
mosphere, with current numerical and Al-driven models exhibiting limited skill, particularly at the fine spatial
scales for human exposure, agriculture, and infrastructure. Here, we introduce DeepMet, a high-resolution, Al-
driven sub-seasonal forecasting system designed to improve the prediction of temperature extremes and their
associated health risks, demonstrated successfully over the continental United States. Specifically, DeepMet
substantially outperforms the benchmark of European Centre for Medium-Range Weather Forecasts, reducing
the root mean square error by 20-60 % for key surface variables, including daily maximum and minimum 2-
meter temperature, specific humidity, and 10-meter wind speed. The model also improves the detection of
extreme heat and cold events by over 40 % across all evaluation metrics. By enhancing early warning cap-
abilities, DeepMet enables more accurate identification of extreme weather conditions, potentially improving
risk communication to prevent additional extreme-weather related deaths in the United States. Remarkably,
such performance is achieved using only a single GPU for training, making the method highly accessible for local
agencies to enhance early warning systems and protect public health. This underscores its strong potential to
transform long-range forecasting and significantly enhance public health preparedness in a changing climate.
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Introduction

In the context of climate change, extreme weather events are be-
coming more frequent and increasingly threaten human health and
living conditions [1,2]. Among all weather-related hazards, extreme
temperatures associated with heatwaves and cold spells are the leading
cause of mortality, contributing to over five million deaths globally
each year [3-6]. Early warning systems, especially those extending to
the sub-seasonal timescale, are essential for improving preparedness
[7]. Numerous previous studies have been conducted to predict extreme
temperatures at sub-seasonal scales [8-10]. In recognition of the im-
portance of early warnings, the United Nations launched the Early
Warnings for All initiative [11], aiming to ensure that every person on
Earth is protected from hazardous weather, water, or climate events

through life-saving early warning systems. Apparently, accurate and
timely forecasts enable proactive healthcare planning, effective risk
communication, and efficient resource allocation, particularly for vul-
nerable populations such as the elderly, children, and individuals with
chronic illnesses.

Traditional numerical models face significant challenges in sub-
seasonal forecasting due to error propagation across time and space,
stemming from the inherently chaotic nature of the atmosphere [12].
While Al-driven approaches have shown promise, they are mostly
constrained to short-term forecasts with limited skill beyond two weeks
[13-16], due to the challenge of effectively balancing focus across the
multi-dimensional atmospheric system, even with substantial compu-
tational resources. Moreover, many of these models do not focus on key
surface-level variables, and forecasting typically global in scale with
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Fig. 1. Framework and advantages of the DeepMet model.

coarse spatial resolution [17], making it difficult to incorporate accu-
rate ground-based observations due to the high spatial heterogeneity of
surface conditions. To better support public health applications oper-
ating with minimal computational cost for local agency, there is a
growing need for high-resolution, regionally focused weather fore-
casting models that emphasize surface variables relevant to human
thermal stress over extended temporal horizons.

To address the limitations mentioned above, we extend Al-based
forecasting to the high-resolution sub-seasonal scale (noted as DeepMet,
see Fig. 1), with a focus on surface variables that are critical for as-
sessing and managing the increasing risks associated with temperature
extremes. The novelty of this study lies in three key aspects, which can
be summarized as follows.

First, for the training dataset, unlike global-scale Al training models
that primarily rely on global datasets which often limited by coarse
spatial resolution, we leverage multi-year dynamical downscaling using
a numerical weather model, incorporating abundant ground-based and
upper-atmosphere historical observations through Four-Dimensional
Data Assimilation [18]. This approach produces regional forecasts at a
12km X 12km resolution ten times finer than the widely used ERA5
dataset from the European Centre for Medium-Range Weather Forecasts
(ECMWF Reanalysis v5) [19] making it significantly more suitable for
assessing human exposure. Additionally, it enables fine-tuning of the
model with high-quality ground observations, resulting in improved
forecasts of surface variables that are more consistent with ground
measurements than those from reanalysis datasets.

Second, for the feature selection, we developed a deep learning
architecture for meteorological forecasting that is both streamlined and
computationally efficient, running on a single NVIDIA A100 GPU and
reducing hardware demands by up to 60-fold compared to traditional
multi-GPU systems. By avoiding unnecessary global-scale predictions of
numerous unrelated factors for localized applications, DeepMet con-
centrates on key variables relevant to temperature extremes.
Specifically, it targets daily maximum 2 m temperature (T2max) and

specific humidity (Q2) for heatwaves, and daily minimum 2m tem-
perature (T2min) combined with wind speed for cold events, which are
core components of widely used public health indices such as the Heat
Index [20] and Wind Chill Index [21]. This low-cost design enables
more efficient support for local agencies, allowing them to develop
improved localized forecasting systems with limited resources.

Third, building on our previous findings regarding the importance
of memory structures for long-term forecasting [22], we implement a
ConvLSTM-based model [23] (Figure S1) that utilizes the past 24 h of
multi-variable inputs to predict daily variations up to 45 days ahead
aligning with the global sub-seasonal to seasonal (S2S) forecasting scale
used by systems such as ECMWEF. This architecture mitigates the chaotic
nature of the atmosphere by leveraging temporal memory and opti-
mizing the overall evolution of weather patterns through a statistical
machine learning process, which helps constrain error propagation over
time, which is an essential feature for achieving reliable long-term
predictions in S2S systems.

Together, these innovations enable our approach to deliver high-
resolution sub-seasonal forecasts with enhanced accuracy in predicting
temperature extremes—all while operating at minimal computational
cost, as detailed in the following section.

Methods
Dynamical downscaling with numerical model

To better represent the human exposure to the extreme tempera-
tures, we leverage a mesoscale numerical weather prediction system
which is the Weather Research and Forecasting (WRF) [24] simulations
dynamically downscaled to a regional scale with a 12km resolution,
which is approximately 10 times finer than the original 1.5 by 1.5 °
resolution (about 110-160 km) of the global ECMWF S2S dataset.

The WRF model was configured following the setup used in our
previous study [25], including the Morrison two-moment microphysics



J. Xing, S. Li, S. Zheng et al.

scheme; the Rapid Radiative Transfer Model for Global Climate Models
(RRTMG) for both longwave and shortwave radiation scheme; the
Yonsei University (YSU) planetary boundary layer (PBL) scheme; the
Pleim—Xiu land surface model; the revised MM5 (Jimenez) surface layer
scheme; and Grell-Freitas (GF), with a radiative feedback cumulus
parameterization option. The WRF model simulations were driven by
the North American Mesoscale (NAM) model analyses from the Na-
tional Centers for Environmental Prediction (NCEP), incorporating
four-dimensional data assimilation (FDDA) with both surface and
upper-air observations. Observation nudging was applied using NCEP’s
Automated Data Processing (ADP) Global Surface and Upper-Air Ob-
servational Weather Data.

For comparison, we obtained ECMWF sub-seasonal forecast data
spanning six years from the open-access repository. The dataset in-
cludes daily control run forecasts of T2, T2max, T2min, U10, V10, and
pressure-level specific humidity (q) with a lead time of up to 46 days.
The original data, provided at a 1.5° X 1.5° resolution, were re-gridded
to the target domain using bilinear interpolation (a commonly used and
physically consistent approach for regridding meteorological fields) to
facilitate comparison.

Ground-based observational data were obtained from the NOAA
NCDC ISD-Lite archive, which provides hourly records of T2, Q2, and
10-meter wind speed (WSPD10) from approximately 6775 sites across
the U.S. domain.

The downscaled WRF model presents better agreement with the
ground-based measurements from NCDC (Figure S1), providing a reli-
able foundation for training DeepMet and enabling it to deliver im-
provement over global forecasting models such as ECMWEF. We adopted
the WRF simulation dataset as our reference because it provides fine-
scale representation suitable for evaluating local and regional varia-
tions, particularly for applications related to human exposure assess-
ment which is a key focus and novelty of this study.

DeepMet model structure

The DeepMet model is built upon a ConvLSTM-based architecture
(Fig. 2), which inherently captures temporal dependencies through its
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recurrent structure. The model performs a direct multi-step forecast for
the next 45 days of each predictive variable (i.e., T2max, T2min, Q2,
and WSPD10) within a single forward pass, rather than a recursive
autoregressive prediction. In other words, the model takes the historical
inputs once and simultaneously predicts the entire 45-day sequence.
Although the prediction is not recursively generated, the ConvLSTM
cells internally propagate temporal information across multiple time
steps during training, allowing the model to learn temporal evolution
patterns. Moreover, because the loss function is computed over all 45
forecast days, the model jointly optimizes performance across the entire
sequence, which helps mitigate error accumulation commonly observed
in traditional autoregressive approaches.

More specifically, consistent with our previous applications in at-
mospheric chemistry forecasting, the DeepMet model architecture in-
tegrates two ConvLSTM modules, each consisting of three layers with
varying channel sizes (256, 128, and 64) and a 3 x 3 kernel. The first
module processes historical records from the past 24 h, incorporating
multiple variables, such as 2D and 3D inputs from model reanalysis and
ground-based measurements to extract key information relevant to
forecasting future variations of the target variable. This processed his-
torical data is then passed to a second ConvLSTM module to generate the
forecast, along with time-independent variables (i.e., geographical fea-
tures and climatological fields, listed in Table 1), but not the time-de-
pendent 2D or 3D variables from future steps. During prediction, the
hidden and cell states (h, c) are dynamically updated, enabling the model
to retain and leverage long-term historical dependencies. This design is
consistent with our prior work in atmospheric chemistry, where predic-
tions at earlier time steps are recursively used as inputs for future steps.
The methodology effectively captures the dual role of meteorological
factors: their gradual modulation of baseline conditions over time (Role
1), and their direct interaction with other variables (Role 2), both of
which are critical in shaping future atmospheric states. Only the target
prediction variables are treated in an autoregressive manner, while the
other meteorological predictors are not recursively predicted by the
model. This design allows DeepMet to generate a direct 45-day forecast
based on historical sequences without relying on unavailable future re-
analysis inputs, thus maintaining a valid forecasting setup.

*

X-23h X-22n

* *

I
Input: geographical features

Input: 2D climatological data

Input: 2D and 3D time-dependent feature (historical only)

combined decoded historical information <«

Fig. 2. Model architecture of DeepMet based on a dual-ConvLSTM structure for direct 45-day multi-step forecasting.
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Table 1
Model feature for each prediction with DeepMet.
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Predict Time independent Time-dependent
variable

Geographic factors 2D features (climatological 2D Feature (historical only) 3D Feature

data) (historical only)
T2max DLUSE, HT, LWMASK, MSFX2, LAI, VEG, ALBEDO, UWIND, VWIND, CFRAC, PBL, prep, Q2, RGRND, T2, TA
T2min LUFRAC, PURB, LAT, LON SWDNBC WSPD10, WSTAR, HFX, LH, USTAR, ZRUF, PRSFC, TA
Q2 WBAR, WR, SNOCOV QC, QV, TA,
CFRAC_3D

WSPD10 uw, vw

A summary of all 2D and 3D variables used in the model is shown in
Table 1. All variables are derived from the WRF reanalysis dataset. The
geographical features used in this study consist of eight time-invariant
variables: dominant land use category (DLUSE), terrain elevation (HT),
land-water mask (LWMASK), map-scale factor squared (MSFX2), land
use fraction (LUFRAC), percentage of urban area (PURB), latitude
(LAT), and longitude (LON). These static features are consistently ap-
plied throughout the entire prediction period.

Four 2D surface characteristics, Leaf Area Index (LAI), vegetation
cover (VEG), albedo, and clear-sky shortwave downwelling radiation
(SWDNBC), are prescribed from climatological datasets, given their
relatively stable annual cycles (Figure S2). We computed the mean of
all historical years for each corresponding calendar day, enabling their
use as inputs under both historical and future conditions. This approach
ensures that the model’s predictive performance is not influenced by
potential uncertainties in forecasting these surface parameters. In
contrast, physical based models like ECMWF model can dynamically
predict these variables through its land surface and radiation schemes,
where their accuracy depends on the performance of the underlying
land-use and radiative transfer models. To maintain a fair comparison,
we deliberately chose to use prescribed versions of these variables in
DeepMet rather than predicted ones.

In addition, 18 time-dependent 2D meteorological variables are
incorporated into the historical module. These include: U- and V-com-
ponent winds (UV-wind), cloud fraction (CFRAC), planetary boundary
layer height (PBL), precipitation (PREP), 2-meter specific humidity
(Q2), shortwave radiation at the ground surface (RGRND), 2-meter
temperature (T2), 10-meter wind speed (WSPD10), convective velocity
scale (WSTAR), sensible heat flux (HFX), latent heat flux (LH), cell-
averaged friction velocity (USTAR), surface roughness length (ZRUF),
surface pressure (PRSFC), average liquid water content of clouds
(WBAR), canopy moisture content (WR), and snow cover (SNOCOV).

Furthermore, six 3D meteorological variables are used, including air
temperature (TA), cloud water mixing ratio (QC), water vapor mixing
ratio (QV), three-dimensional cloud fraction (CFRAC_3D), and the U
and V components of wind (UW, VW). These variables are resolved
across 35 vertical levels, from the surface up to 100 mb, and in-
corporated into the historical module to enhance the model’s ability to
capture vertical atmospheric structure. All these variables are in-
tegrated within the dual-ConvLSTM structure of DeepMet, as illustrated
in Fig. 2.

DeepMet training and testing

We leverage multiple WRF model simulations for pre-training and
incorporate ground-based measurements from the NCDC dataset to
enhance model performance at the surface level. The model is initially
trained using data from five historical years (2008, 2012, 2014, 2019,
and 2021, randomly selected from the historical period, due to the
limited computational resources and memory), followed by fine-tuning
with NCDC ground-based measurements. This strategy helps mitigate
sample imbalance in the observational data by avoiding direct training
solely on the ground measurements [26]. Model performance is

evaluated using data from the year of 2023, emulating the strategy of
leveraging historical data to forecast recent conditions. The selected
years were chosen based on data availability from the CONUS 12 km
WREF simulation dataset. Due to computational constraints, continuous
simulations for all intermediate years were not available for this study.
However, future work will incorporate additional historical years to
further expand the training dataset and enhance model robustness.

Given the large dataset size and limited computational resources,
particularly RAM constraints, we adopted a subset training strategy.
Specifically, the model was trained on batches of 20 subsets of all ap-
proximately 1500 samples, over a total of 4000 epochs, preventing the
need to load the entire dataset into memory simultaneously. For data
augmentation, random cropping was applied to the feature maps, re-
sizing them to 120 x 120 grid cells. The model was trained using the
Mean Squared Error loss function. The learning rate was initialized at
0.0001 and linearly decayed to zero over the course of training. The
Adam optimizer was employed to improve model convergence and
stability [27]. The DeepMet model for each predictive variable (i.e.,
T2max, T2min, Q2, and WSPD10) using a single GPU with approxi-
mately 24 h of training time.

We evaluate the performance of the DeepMet model using several
metrics: the Anomaly Correlation Coefficient (ACC), Structural
Similarity Index Measure (SSIM), Root Mean Square Error (RMSE), and
the Ranked Probability Skill Score (RPSS). Spatially averaged statistics
are computed by comparing DeepMet predictions with both ECMWF
forecasts and WRF downscaled meteorological reanalysis data. In ad-
dition, RPSS is used to evaluate forecast skill against surface-level ob-
servations from the NCDC ground-based measurement network.

To evaluate the heatwave and cold event prediction performance,
we use four key metrics: F1 Score, Critical Success Index (CSI),
Probability of Detection (POD), and False Alarm Rate (FAR). These
metrics assess the models’ ability to accurately detect impactful extreme
temperature events, which are defined using T2max and Q2 for heat-
waves, and T2min and 10-meter wind speed (WSPD10) for cold spells.

In this study, we focused on the model’s performance for individual
high-temperature or low-temperature days, rather than multi-day
heatwave sequences. Specifically, a heatwave event is defined as T2max
> 32°Cand Q2 > 0.014 kg/kg, while a cold event is defined as T2min
< 0 °C with WSPD10 > 3ms™. These thresholds are applied on a
daily basis but can also be part of multi-day events or percentile-based
definitions [20,21,28]. The criteria were adapted to represent extreme
temperature conditions over the CONUS domain in our analysis.

Health impact assessment

To quantify the potential public health benefits of improved early
warning provide by DeepMet, we estimated the number of individuals
accurately identified as exposed to heatwaves by DeepMet compared to
ECMWF. Population data were obtained from the Gridded Population of
the World, Version 4 (GPWv4), for the most recent year available
(2020) [29], at a spatial resolution of 2.5 arc-minutes, and regridded to
match the target domain.
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(a) Heat-related variables
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Fig. 3. Comparison of DeepMet and ECMWF predictions on crucial meteorological variables relate to extreme temperature at S2S scale (the percentage number
shown in the blue bar represent the change in each metrics from ECMWF to DeepMet; the color bar is corresponding to each RPSS comparison).

Results
Improved sub-seasonal prediction on crucial ground meteorological variables

DeepMet demonstrates significant improvements in sub-seasonal
forecasting of key surface meteorological variables, as illustrated in
Fig. 3. Using dynamically downscaled reanalysis fields as ground truth,
DeepMet outperforms a typical physics-based S2S forecast system
(benchmarked against ECMWF) across the critical forecast range of
14-42 days. It not only captures the magnitude of meteorological
variables more accurately but also more effectively reproduces their
temporal evolution and spatial structure at high resolution.

Specifically, DeepMet increases the temporal anomaly correlation
coefficient (ACC) by 4-11 % for T2max and T2min, 20-32 % for Q2,
and up to 138 % for WSPD10 (indicted by the percentage number in
each blue bar in Fig. 3), reflecting a stronger agreement with observed
temporal variability, independent of mean bias, comparing to the
ECMWF benchmark. Notably, these improvements become more pro-
nounced increasing lead time, underscoring DeepMet’s effectiveness in
mitigating error propagation within the inherently chaotic S2S fore-
casting regime.

In terms of spatial accuracy, DeepMet substantially improves the
Structural Similarity Index (SSIM) by 80-250 % for T2max, T2min and
WSPDI10 (indicted by the percentage number in each blue bar in Fig. 3),
demonstrating enhanced spatial fidelity in structure, luminance, and
contrast, largely attributable to its finer spatial resolution compared to
global systems (as ECMWF). Additionally, DeepMet reduces RMSE by
approximately 20-60 % across all four variables, indicating a substantial
decrease in average prediction error and closer alignment with observed
data. The differences in performances between the two models are also
statistically significant, with p-values < 0.001 across all key metrics
(Figure S3). These results confirm that the performance improvements
achieved by DeepMet over ECMWF are robust and statistically significant.

We further validated DeepMet’s performance using local ground-
based observations from the NOAA National Climatic Data Center
(NCDC) network. In addition to substantially reducing RMSE compared
to ECMWF forecasts, DeepMet achieved significantly higher Ranked
Probability Skill Scores (RPSS), with improvements of up to 0.5 for all
four variables, demonstrating improved probabilistic forecasting skill
relative to climatology (i.e., the historical average distribution). These
results highlight DeepMet’s effectiveness in delivering skillful and re-
liable S2S forecasts.
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Fig. 4. Comparison of DeepMet and ECMWEF predictions on extreme temperature events (the percentage number besides the line represent the changes from ECMWF to DeepMet).

Enhanced predictive capability for heat-wave and cold event

With enhanced predictability of key meteorological variables,
DeepMet demonstrates superior capability in forecasting heatwaves and
cold events, as shown in Fig. 4. Using NCDC observations as ground
truth, DeepMet significantly outperforms ECMWF in long-range ex-
treme temperature prediction.

Specifically, DeepMet achieves substantially higher F1 scores by
40 % for heatwaves and 90 % for cold events (indicted by the percen-
tage number besides the line in Fig. 4), indicating a better balance
between high recall (capturing true events) and high precision (redu-
cing false alarms). The Critical Success Index (CSI) also shows marked
improvement, increasing by 53 % for heatwaves and 123 % and cold
events, confirming DeepMet’s superior ability to detect extreme events
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accurately while minimizing both misses and false positives. Moreover,
the Probability of Detection (POD) increases by 50 % for heatwaves and
185% for cold events, demonstrating that DeepMet captures sig-
nificantly more true extreme events than ECMWF benchmark. Si-
multaneously, the False Alarm Ratio (FAR) decreases by 29 % and 1.4 %
for heatwaves and cold events, respectively, resulting in fewer false
alerts and more trustworthy forecasts.

We also compared the predictions of the two models for re-
presentative single-day heatwaves and cold events, using forecast lead
times ranging from 14 to 42 days. The results show that DeepMet sig-
nificantly outperforms ECMWF, consistently capturing extreme tem-
perature events across the spatial domain, with 30-50 % more suc-
cessful detections (indicted by the mean successful number above each
spatial map in Fig. 4).

Potential health benefits of early warning systems

By accurately forecasting extreme heatwaves and cold events,
DeepMet can significantly strengthen early warning systems, enabling
communities, especially vulnerable populations and better preparing
more effectively. We assessed the added value of DeepMet over ECMWF
for both types of events throughout 2023. As shown in Fig. 5, sub-
stantial improvements in cold event prediction were observed across
northern states, which are more frequently impacted by cold extremes.
In contrast, the more significant improvements in heatwave prediction
occurred in southern states, where extreme heat events are more
common.

Compared to ECMWF forecasts, DeepMet enables more accurate
identification of extreme weather events, potentially improving early
warnings for an additional 600 million people-day during cold events
and 3300 million people-day during heatwaves. This represents a
30 % increase in population coverage during cold spells and a 60 %
increase during heatwaves. Given the annual estimates of 700-1300
heat-related deaths and 1200-2000 cold-related deaths in the U.S.
[30-32], enhanced preparedness enabled by DeepMet such as timely
healthcare interventions or emergency services could help prevent
considerable deaths annually. These benefits become even more
substantial as extreme heat and cold events intensify under a busi-
ness-as-usual climate change scenario [32], potentially preventing
additional premature deaths and avoiding associated economic
losses each year, not to mention the additional risks posed to agri-
culture, infrastructure, and broader societal systems. These findings
highlight the tangible value of more accurate and timely sub-sea-
sonal extreme temperature forecasts.

Discussion and conclusion

This study demonstrates a successful application of Al in extending
the temporal scale of weather forecasts, an area that has traditionally
posed significant challenges for numerical models. The key to
DeepMet’s success lies in its ability to incorporate time-series memory
into the prediction process, enabling the model to effectively constrain
error propagation over time. Although traditional numerical methods
retain memory from the previous time step, their atmospheric initial
conditions rarely extend beyond 1-2 weeks due to chaotic dynamics.
They also rely heavily on step-by-step progression, making them prone
to cumulative errors. DeepMet leverages information from multiple
previous time steps, thereby reducing the risk of runaway inaccuracies.
This finding is particularly important for forecasting highly turbulent
systems such as the atmosphere, highlighting that overcoming the
limitations of long-range weather prediction may require moving be-
yond purely mathematical approaches to models that incorporate his-
torical memory. While DeepMet demonstrates strong performance over
CONUS, its framework is generalizable and can be extended to other
regions given adequate data support. Future applications should
therefore consider not only global-scale modeling but also fine-scale,
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high-resolution implementations tailored to local climatic and ob-
servational contexts.

In the current version of DeepMet, we use the previous 24 h of data
as input. That is mainly because unlike global-scale models (e.g., large
foundation models) that capture spatially extensive information at a
single time point and rely less on historical context, regional models
such as DeepMet must account for external influences from surrounding
areas that evolve over time. Incorporating multiple historical time steps
allows the model to implicitly capture these broader dynamical effects.
While we initially expected that incorporating longer historical records
(e.g., extending to 10 days) might improve model performance, our
experiments indicated otherwise. In fact, extending the input window
to 10 days often resulted in reduced accuracy (Figure S4), likely be-
cause the most recent 24-hour data contains the most relevant pre-
dictive signals for S2S forecasting, while older data contributes di-
minishing value. Additionally, we did not include more than 24h of
high-resolution data due to the computational resource constraints
(mostly due to RAM limitation), which would significantly reduce the
effective size of the training dataset and compromise training effi-
ciency. Therefore, the choice of window size represents a trade-off
between predictive skill and computational efficiency. The optimal
window size may also vary by region or season, depending on factors
such as synoptic persistence or external forcing (e.g., teleconnections).
Apparently, future work may explore methods to effectively in-
corporate longer historical time series into the model to systematically
optimize window size based on regional characteristics and seasonality,
particularly when computational resources become available.

The success of DeepMet also challenges traditional perspectives in
S2S forecasting. Conventional wisdom holds that long-term predictions
require global-scale models, such as ECMWF, to capture the influence of
large-scale atmospheric circulation across regions. Particularly, pre-
vious studies have highlighted the importance of teleconnections and
slow modes of variability such as the MJO and ENSO for predictability
at S2S time scales. Though in regional scale model like DeepMet, the
global effects may already be implicitly captured by the model through
learning from historical information. Since large-scale impacts propa-
gate into the target domain step by step, they are eventually reflected in
related meteorological features within the domain. Thus, historical data
(even at 24-hour intervals, but extendable to weekly scales) can help
machine learning models capture and enhance the influence of remote
drivers. Our results also demonstrate that a regional-scale S2S model
can outperform global models even without explicitly representing
global influences. This is probably because error propagation occurs not
only temporally but also spatially. Errors originating outside the target
domain can amplify and be transported into the region of interest,
potentially degrading forecast accuracy. While global models are cap-
able of capturing cross-boundary flows, they may also introduce addi-
tional uncertainty from distant regions, which can limit their benefit.
Moreover, global models often face a trade-off between resolution and
spatial coverage, often allocating computational resources to areas that
are not directly relevant to the target region. That said, this does not
imply that boundary conditions are unimportant. In fact, our experi-
ments indicate that incorporating simplified boundary condition in-
formation improves forecast skill during the first two weeks (Figure S5).
Additionally, for short-term forecasts (e.g., next-day prediction, one
leading day), the global model ECMWF indeed performs better than
DeepMet when compared against WRF (Figure S6-S7), which also
supports the suitability of WRF as the reference dataset. While, our
study focuses on the S2S forecast range, where ECMWF performance
deteriorates more rapidly with lead time, while DeepMet maintains
more stable performance over the full 45-day period. This trade-off
between short-term accuracy and long-term stability explains why
DeepMet eventually outperforms ECMWF at extended lead times. To
ensure fairness, we also compared the results at the same coarse (1.5°)
resolution as ECMWF forecasts and found consistent improvements by
DeepMet across key metrics at S2S scales (Figure S8). This finding
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(a) averages by states

Benefit Type

W Extra benefit in better predicting cold event with DeepMet
Extra benefit in better predicting heat-wave with DeepMet
Disbenefit from worse performance with DeepMet compared to ECMWF

(b) aggregated for populations
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Fig. 5. Estimated benefits of DeepMet in identifying extreme heatwaves and cold events during 2023.

suggests that observed improvements from ECMWF to DeepMet are not
driven by resolution effects alone, and that the interpolation and re-
solution differences do not substantially alter the main conclusions
regarding DeepMet’s forecast skill. Apparently, while global context is
useful for short-term predictions, it may be less critical or even coun-
terproductive for longer-term S2S forecasting.

Another challenge to traditional thinking lies in the assumption that
meteorological variables are highly interdependent and should be
predicted simultaneously. However, our findings suggest that this ap-
proach does not always yield better performance. Due to error propa-
gation, inaccuracies in one variable can adversely affect the prediction
of others. In contrast to other Al-based weather models that attempt to
forecast multiple variables concurrently, DeepMet employs a single-
variable prediction strategy. This allows the model to focus on learning
the dynamics of each variable independently, without the need to
balance competing priorities during optimization. It also enables the

selection of more relevant 3D input features tailored to each specific
variable (Table 1). Moreover, this modular approach enables parallel
training across multiple GPUs, improving both efficiency and scalability
while preserving task-specific accuracy.

We scaled the time series input to a daily resolution for S2S fore-
casting to reduce error propagation across time steps. Additionally,
using hourly data would require significantly more memory, which
limits the amount of training data that can be processed and ultimately
hinders model performance. In our experiments, increasing the tem-
poral resolution of predictions from daily to 3-hourly, or 6-hourly in-
tervals which did not yield meaningful improvements (Figure S9).
Therefore, daily resolution remains a practical and effective choice,
especially for S2S forecasts where long lead times are the primary focus.

While large GPU resources can enhance model performance, our
study demonstrates the feasibility of generating fine-scale weather
forecasts using limited computational resources. This makes the
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approach more realistic and accessible. Importantly, the method well-
aligned with localized policy needs for protecting public health, agri-
culture, and infrastructure. Looking ahead, there is substantial potential
to further enhance forecasting skill, both in accuracy and scope by
expanding applications to other critical variables such as precipitation,
wildfires, and floods, ultimately contributing to the protection of more
lives.

Incorporating additional future-relevant information such as slowly
varying or accurately predictable variables can further improve fore-
casting performance. For example, incorporating improved re-
presentations of time-series day for slowly varying geophysical inputs,
such as leaf area index, vegetation cover, albedo, downward shortwave
radiation, into DeepMet may lead to noticeable improvements in pre-
dictive accuracy (Figure S10). The current results can be viewed as a
conservative (lower-bound) estimate of DeepMet’s performance relative
to ECMWF. There is no doubt that AI will play an increasingly vital role
in extreme weather prediction, especially at the S2S scale, which con-
tinues to pose significant challenges for traditional numerical models.
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