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A B S T R A C T

Sub-seasonal weather prediction remains a significant scientific challenge due to the chaotic nature of the at
mosphere, with current numerical and AI-driven models exhibiting limited skill, particularly at the fine spatial 
scales for human exposure, agriculture, and infrastructure. Here, we introduce DeepMet, a high-resolution, AI- 
driven sub-seasonal forecasting system designed to improve the prediction of temperature extremes and their 
associated health risks, demonstrated successfully over the continental United States. Specifically, DeepMet 
substantially outperforms the benchmark of European Centre for Medium-Range Weather Forecasts, reducing 
the root mean square error by 20–60 % for key surface variables, including daily maximum and minimum 2- 
meter temperature, specific humidity, and 10-meter wind speed. The model also improves the detection of 
extreme heat and cold events by over 40 % across all evaluation metrics. By enhancing early warning cap
abilities, DeepMet enables more accurate identification of extreme weather conditions, potentially improving 
risk communication to prevent additional extreme-weather related deaths in the United States. Remarkably, 
such performance is achieved using only a single GPU for training, making the method highly accessible for local 
agencies to enhance early warning systems and protect public health. This underscores its strong potential to 
transform long-range forecasting and significantly enhance public health preparedness in a changing climate.

Introduction

In the context of climate change, extreme weather events are be
coming more frequent and increasingly threaten human health and 
living conditions [1,2]. Among all weather-related hazards, extreme 
temperatures associated with heatwaves and cold spells are the leading 
cause of mortality, contributing to over five million deaths globally 
each year [3–6]. Early warning systems, especially those extending to 
the sub-seasonal timescale, are essential for improving preparedness 
[7]. Numerous previous studies have been conducted to predict extreme 
temperatures at sub-seasonal scales [8–10]. In recognition of the im
portance of early warnings, the United Nations launched the Early 
Warnings for All initiative [11], aiming to ensure that every person on 
Earth is protected from hazardous weather, water, or climate events 

through life-saving early warning systems. Apparently, accurate and 
timely forecasts enable proactive healthcare planning, effective risk 
communication, and efficient resource allocation, particularly for vul
nerable populations such as the elderly, children, and individuals with 
chronic illnesses.

Traditional numerical models face significant challenges in sub- 
seasonal forecasting due to error propagation across time and space, 
stemming from the inherently chaotic nature of the atmosphere [12]. 
While AI-driven approaches have shown promise, they are mostly 
constrained to short-term forecasts with limited skill beyond two weeks 
[13–16], due to the challenge of effectively balancing focus across the 
multi-dimensional atmospheric system, even with substantial compu
tational resources. Moreover, many of these models do not focus on key 
surface-level variables, and forecasting typically global in scale with 
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coarse spatial resolution [17], making it difficult to incorporate accu
rate ground-based observations due to the high spatial heterogeneity of 
surface conditions. To better support public health applications oper
ating with minimal computational cost for local agency, there is a 
growing need for high-resolution, regionally focused weather fore
casting models that emphasize surface variables relevant to human 
thermal stress over extended temporal horizons.

To address the limitations mentioned above, we extend AI-based 
forecasting to the high-resolution sub-seasonal scale (noted as DeepMet, 
see Fig. 1), with a focus on surface variables that are critical for as
sessing and managing the increasing risks associated with temperature 
extremes. The novelty of this study lies in three key aspects, which can 
be summarized as follows.

First, for the training dataset, unlike global-scale AI training models 
that primarily rely on global datasets which often limited by coarse 
spatial resolution, we leverage multi-year dynamical downscaling using 
a numerical weather model, incorporating abundant ground-based and 
upper-atmosphere historical observations through Four-Dimensional 
Data Assimilation [18]. This approach produces regional forecasts at a 
12 km × 12 km resolution ten times finer than the widely used ERA5 
dataset from the European Centre for Medium-Range Weather Forecasts 
(ECMWF Reanalysis v5) [19] making it significantly more suitable for 
assessing human exposure. Additionally, it enables fine-tuning of the 
model with high-quality ground observations, resulting in improved 
forecasts of surface variables that are more consistent with ground 
measurements than those from reanalysis datasets.

Second, for the feature selection, we developed a deep learning 
architecture for meteorological forecasting that is both streamlined and 
computationally efficient, running on a single NVIDIA A100 GPU and 
reducing hardware demands by up to 60-fold compared to traditional 
multi-GPU systems. By avoiding unnecessary global-scale predictions of 
numerous unrelated factors for localized applications, DeepMet con
centrates on key variables relevant to temperature extremes. 
Specifically, it targets daily maximum 2 m temperature (T2max) and 

specific humidity (Q2) for heatwaves, and daily minimum 2 m tem
perature (T2min) combined with wind speed for cold events, which are 
core components of widely used public health indices such as the Heat 
Index [20] and Wind Chill Index [21]. This low-cost design enables 
more efficient support for local agencies, allowing them to develop 
improved localized forecasting systems with limited resources.

Third, building on our previous findings regarding the importance 
of memory structures for long-term forecasting [22], we implement a 
ConvLSTM-based model [23] (Figure S1) that utilizes the past 24 h of 
multi-variable inputs to predict daily variations up to 45 days ahead 
aligning with the global sub-seasonal to seasonal (S2S) forecasting scale 
used by systems such as ECMWF. This architecture mitigates the chaotic 
nature of the atmosphere by leveraging temporal memory and opti
mizing the overall evolution of weather patterns through a statistical 
machine learning process, which helps constrain error propagation over 
time, which is an essential feature for achieving reliable long-term 
predictions in S2S systems.

Together, these innovations enable our approach to deliver high- 
resolution sub-seasonal forecasts with enhanced accuracy in predicting 
temperature extremes—all while operating at minimal computational 
cost, as detailed in the following section.

Methods

Dynamical downscaling with numerical model

To better represent the human exposure to the extreme tempera
tures, we leverage a mesoscale numerical weather prediction system 
which is the Weather Research and Forecasting (WRF) [24] simulations 
dynamically downscaled to a regional scale with a 12 km resolution, 
which is approximately 10 times finer than the original 1.5 by 1.5 ° 
resolution (about 110–160 km) of the global ECMWF S2S dataset.

The WRF model was configured following the setup used in our 
previous study [25], including the Morrison two-moment microphysics 

Fig. 1. Framework and advantages of the DeepMet model. 
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scheme; the Rapid Radiative Transfer Model for Global Climate Models 
(RRTMG) for both longwave and shortwave radiation scheme; the 
Yonsei University (YSU) planetary boundary layer (PBL) scheme; the 
Pleim–Xiu land surface model; the revised MM5 (Jimenez) surface layer 
scheme; and Grell–Freitas (GF), with a radiative feedback cumulus 
parameterization option. The WRF model simulations were driven by 
the North American Mesoscale (NAM) model analyses from the Na
tional Centers for Environmental Prediction (NCEP), incorporating 
four-dimensional data assimilation (FDDA) with both surface and 
upper-air observations. Observation nudging was applied using NCEP’s 
Automated Data Processing (ADP) Global Surface and Upper-Air Ob
servational Weather Data.

For comparison, we obtained ECMWF sub-seasonal forecast data 
spanning six years from the open-access repository. The dataset in
cludes daily control run forecasts of T2, T2max, T2min, U10, V10, and 
pressure-level specific humidity (q) with a lead time of up to 46 days. 
The original data, provided at a 1.5° × 1.5° resolution, were re-gridded 
to the target domain using bilinear interpolation (a commonly used and 
physically consistent approach for regridding meteorological fields) to 
facilitate comparison.

Ground-based observational data were obtained from the NOAA 
NCDC ISD-Lite archive, which provides hourly records of T2, Q2, and 
10-meter wind speed (WSPD10) from approximately 6775 sites across 
the U.S. domain.

The downscaled WRF model presents better agreement with the 
ground-based measurements from NCDC (Figure S1), providing a reli
able foundation for training DeepMet and enabling it to deliver im
provement over global forecasting models such as ECMWF. We adopted 
the WRF simulation dataset as our reference because it provides fine- 
scale representation suitable for evaluating local and regional varia
tions, particularly for applications related to human exposure assess
ment which is a key focus and novelty of this study.

DeepMet model structure

The DeepMet model is built upon a ConvLSTM-based architecture 
(Fig. 2), which inherently captures temporal dependencies through its 

recurrent structure. The model performs a direct multi-step forecast for 
the next 45 days of each predictive variable (i.e., T2max, T2min, Q2, 
and WSPD10) within a single forward pass, rather than a recursive 
autoregressive prediction. In other words, the model takes the historical 
inputs once and simultaneously predicts the entire 45-day sequence. 
Although the prediction is not recursively generated, the ConvLSTM 
cells internally propagate temporal information across multiple time 
steps during training, allowing the model to learn temporal evolution 
patterns. Moreover, because the loss function is computed over all 45 
forecast days, the model jointly optimizes performance across the entire 
sequence, which helps mitigate error accumulation commonly observed 
in traditional autoregressive approaches.

More specifically, consistent with our previous applications in at
mospheric chemistry forecasting, the DeepMet model architecture in
tegrates two ConvLSTM modules, each consisting of three layers with 
varying channel sizes (256, 128, and 64) and a 3 × 3 kernel. The first 
module processes historical records from the past 24 h, incorporating 
multiple variables, such as 2D and 3D inputs from model reanalysis and 
ground-based measurements to extract key information relevant to 
forecasting future variations of the target variable. This processed his
torical data is then passed to a second ConvLSTM module to generate the 
forecast, along with time-independent variables (i.e., geographical fea
tures and climatological fields, listed in Table 1), but not the time-de
pendent 2D or 3D variables from future steps. During prediction, the 
hidden and cell states (h, c) are dynamically updated, enabling the model 
to retain and leverage long-term historical dependencies. This design is 
consistent with our prior work in atmospheric chemistry, where predic
tions at earlier time steps are recursively used as inputs for future steps. 
The methodology effectively captures the dual role of meteorological 
factors: their gradual modulation of baseline conditions over time (Role 
1), and their direct interaction with other variables (Role 2), both of 
which are critical in shaping future atmospheric states. Only the target 
prediction variables are treated in an autoregressive manner, while the 
other meteorological predictors are not recursively predicted by the 
model. This design allows DeepMet to generate a direct 45-day forecast 
based on historical sequences without relying on unavailable future re
analysis inputs, thus maintaining a valid forecasting setup.

Fig. 2. Model architecture of DeepMet based on a dual-ConvLSTM structure for direct 45-day multi-step forecasting. 
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A summary of all 2D and 3D variables used in the model is shown in 
Table 1. All variables are derived from the WRF reanalysis dataset. The 
geographical features used in this study consist of eight time-invariant 
variables: dominant land use category (DLUSE), terrain elevation (HT), 
land–water mask (LWMASK), map-scale factor squared (MSFX2), land 
use fraction (LUFRAC), percentage of urban area (PURB), latitude 
(LAT), and longitude (LON). These static features are consistently ap
plied throughout the entire prediction period.

Four 2D surface characteristics, Leaf Area Index (LAI), vegetation 
cover (VEG), albedo, and clear-sky shortwave downwelling radiation 
(SWDNBC), are prescribed from climatological datasets, given their 
relatively stable annual cycles (Figure S2). We computed the mean of 
all historical years for each corresponding calendar day, enabling their 
use as inputs under both historical and future conditions. This approach 
ensures that the model’s predictive performance is not influenced by 
potential uncertainties in forecasting these surface parameters. In 
contrast, physical based models like ECMWF model can dynamically 
predict these variables through its land surface and radiation schemes, 
where their accuracy depends on the performance of the underlying 
land-use and radiative transfer models. To maintain a fair comparison, 
we deliberately chose to use prescribed versions of these variables in 
DeepMet rather than predicted ones.

In addition, 18 time-dependent 2D meteorological variables are 
incorporated into the historical module. These include: U- and V-com
ponent winds (UV-wind), cloud fraction (CFRAC), planetary boundary 
layer height (PBL), precipitation (PREP), 2-meter specific humidity 
(Q2), shortwave radiation at the ground surface (RGRND), 2-meter 
temperature (T2), 10-meter wind speed (WSPD10), convective velocity 
scale (WSTAR), sensible heat flux (HFX), latent heat flux (LH), cell- 
averaged friction velocity (USTAR), surface roughness length (ZRUF), 
surface pressure (PRSFC), average liquid water content of clouds 
(WBAR), canopy moisture content (WR), and snow cover (SNOCOV).

Furthermore, six 3D meteorological variables are used, including air 
temperature (TA), cloud water mixing ratio (QC), water vapor mixing 
ratio (QV), three-dimensional cloud fraction (CFRAC_3D), and the U 
and V components of wind (UW, VW). These variables are resolved 
across 35 vertical levels, from the surface up to 100 mb, and in
corporated into the historical module to enhance the model’s ability to 
capture vertical atmospheric structure. All these variables are in
tegrated within the dual-ConvLSTM structure of DeepMet, as illustrated 
in Fig. 2.

DeepMet training and testing

We leverage multiple WRF model simulations for pre-training and 
incorporate ground-based measurements from the NCDC dataset to 
enhance model performance at the surface level. The model is initially 
trained using data from five historical years (2008, 2012, 2014, 2019, 
and 2021, randomly selected from the historical period, due to the 
limited computational resources and memory), followed by fine-tuning 
with NCDC ground-based measurements. This strategy helps mitigate 
sample imbalance in the observational data by avoiding direct training 
solely on the ground measurements [26]. Model performance is 

evaluated using data from the year of 2023, emulating the strategy of 
leveraging historical data to forecast recent conditions. The selected 
years were chosen based on data availability from the CONUS 12 km 
WRF simulation dataset. Due to computational constraints, continuous 
simulations for all intermediate years were not available for this study. 
However, future work will incorporate additional historical years to 
further expand the training dataset and enhance model robustness.

Given the large dataset size and limited computational resources, 
particularly RAM constraints, we adopted a subset training strategy. 
Specifically, the model was trained on batches of 20 subsets of all ap
proximately 1500 samples, over a total of 4000 epochs, preventing the 
need to load the entire dataset into memory simultaneously. For data 
augmentation, random cropping was applied to the feature maps, re
sizing them to 120 × 120 grid cells. The model was trained using the 
Mean Squared Error loss function. The learning rate was initialized at 
0.0001 and linearly decayed to zero over the course of training. The 
Adam optimizer was employed to improve model convergence and 
stability [27]. The DeepMet model for each predictive variable (i.e., 
T2max, T2min, Q2, and WSPD10) using a single GPU with approxi
mately 24 h of training time.

We evaluate the performance of the DeepMet model using several 
metrics: the Anomaly Correlation Coefficient (ACC), Structural 
Similarity Index Measure (SSIM), Root Mean Square Error (RMSE), and 
the Ranked Probability Skill Score (RPSS). Spatially averaged statistics 
are computed by comparing DeepMet predictions with both ECMWF 
forecasts and WRF downscaled meteorological reanalysis data. In ad
dition, RPSS is used to evaluate forecast skill against surface-level ob
servations from the NCDC ground-based measurement network.

To evaluate the heatwave and cold event prediction performance, 
we use four key metrics: F1 Score, Critical Success Index (CSI), 
Probability of Detection (POD), and False Alarm Rate (FAR). These 
metrics assess the models’ ability to accurately detect impactful extreme 
temperature events, which are defined using T2max and Q2 for heat
waves, and T2min and 10-meter wind speed (WSPD10) for cold spells.

In this study, we focused on the model’s performance for individual 
high-temperature or low-temperature days, rather than multi-day 
heatwave sequences. Specifically, a heatwave event is defined as T2max 
>  32 °C and Q2  >  0.014 kg/kg, while a cold event is defined as T2min 
<  0 °C with WSPD10  >  3 m s⁻¹ . These thresholds are applied on a 
daily basis but can also be part of multi-day events or percentile-based 
definitions [20,21,28]. The criteria were adapted to represent extreme 
temperature conditions over the CONUS domain in our analysis.

Health impact assessment

To quantify the potential public health benefits of improved early 
warning provide by DeepMet, we estimated the number of individuals 
accurately identified as exposed to heatwaves by DeepMet compared to 
ECMWF. Population data were obtained from the Gridded Population of 
the World, Version 4 (GPWv4), for the most recent year available 
(2020) [29], at a spatial resolution of 2.5 arc-minutes, and regridded to 
match the target domain.

Table 1 
Model feature for each prediction with DeepMet. 

Predict 
variable

Time independent Time-dependent

Geographic factors 2D features (climatological 
data)

2D Feature (historical only) 3D Feature 
(historical only)

T2max DLUSE, HT, LWMASK, MSFX2, 
LUFRAC, PURB, LAT, LON

LAI, VEG, ALBEDO, 
SWDNBC

UWIND, VWIND, CFRAC, PBL, prep, Q2, RGRND, T2, 
WSPD10, WSTAR, HFX, LH, USTAR, ZRUF, PRSFC, 
WBAR, WR, SNOCOV

TA
T2min TA
Q2 QC, QV, TA, 

CFRAC_3D
WSPD10 UW, VW
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Results

Improved sub-seasonal prediction on crucial ground meteorological variables

DeepMet demonstrates significant improvements in sub-seasonal 
forecasting of key surface meteorological variables, as illustrated in 
Fig. 3. Using dynamically downscaled reanalysis fields as ground truth, 
DeepMet outperforms a typical physics-based S2S forecast system 
(benchmarked against ECMWF) across the critical forecast range of 
14–42 days. It not only captures the magnitude of meteorological 
variables more accurately but also more effectively reproduces their 
temporal evolution and spatial structure at high resolution.

Specifically, DeepMet increases the temporal anomaly correlation 
coefficient (ACC) by 4–11 % for T2max and T2min, 20–32 % for Q2, 
and up to 138 % for WSPD10 (indicted by the percentage number in 
each blue bar in Fig. 3), reflecting a stronger agreement with observed 
temporal variability, independent of mean bias, comparing to the 
ECMWF benchmark. Notably, these improvements become more pro
nounced increasing lead time, underscoring DeepMet’s effectiveness in 
mitigating error propagation within the inherently chaotic S2S fore
casting regime.

In terms of spatial accuracy, DeepMet substantially improves the 
Structural Similarity Index (SSIM) by 80–250 % for T2max, T2min and 
WSPD10 (indicted by the percentage number in each blue bar in Fig. 3), 
demonstrating enhanced spatial fidelity in structure, luminance, and 
contrast, largely attributable to its finer spatial resolution compared to 
global systems (as ECMWF). Additionally, DeepMet reduces RMSE by 
approximately 20–60 % across all four variables, indicating a substantial 
decrease in average prediction error and closer alignment with observed 
data. The differences in performances between the two models are also 
statistically significant, with p-values <  0.001 across all key metrics 
(Figure S3). These results confirm that the performance improvements 
achieved by DeepMet over ECMWF are robust and statistically significant.

We further validated DeepMet’s performance using local ground- 
based observations from the NOAA National Climatic Data Center 
(NCDC) network. In addition to substantially reducing RMSE compared 
to ECMWF forecasts, DeepMet achieved significantly higher Ranked 
Probability Skill Scores (RPSS), with improvements of up to 0.5 for all 
four variables, demonstrating improved probabilistic forecasting skill 
relative to climatology (i.e., the historical average distribution). These 
results highlight DeepMet’s effectiveness in delivering skillful and re
liable S2S forecasts.

Fig. 3. Comparison of DeepMet and ECMWF predictions on crucial meteorological variables relate to extreme temperature at S2S scale (the percentage number 
shown in the blue bar represent the change in each metrics from ECMWF to DeepMet; the color bar is corresponding to each RPSS comparison).
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Enhanced predictive capability for heat-wave and cold event

With enhanced predictability of key meteorological variables, 
DeepMet demonstrates superior capability in forecasting heatwaves and 
cold events, as shown in Fig. 4. Using NCDC observations as ground 
truth, DeepMet significantly outperforms ECMWF in long-range ex
treme temperature prediction.

Specifically, DeepMet achieves substantially higher F1 scores by 
40 % for heatwaves and 90 % for cold events (indicted by the percen
tage number besides the line in Fig. 4), indicating a better balance 
between high recall (capturing true events) and high precision (redu
cing false alarms). The Critical Success Index (CSI) also shows marked 
improvement, increasing by 53 % for heatwaves and 123 % and cold 
events, confirming DeepMet’s superior ability to detect extreme events 

Fig. 4. Comparison of DeepMet and ECMWF predictions on extreme temperature events (the percentage number besides the line represent the changes from ECMWF to DeepMet). 
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accurately while minimizing both misses and false positives. Moreover, 
the Probability of Detection (POD) increases by 50 % for heatwaves and 
185 % for cold events, demonstrating that DeepMet captures sig
nificantly more true extreme events than ECMWF benchmark. Si
multaneously, the False Alarm Ratio (FAR) decreases by 29 % and 1.4 % 
for heatwaves and cold events, respectively, resulting in fewer false 
alerts and more trustworthy forecasts.

We also compared the predictions of the two models for re
presentative single-day heatwaves and cold events, using forecast lead 
times ranging from 14 to 42 days. The results show that DeepMet sig
nificantly outperforms ECMWF, consistently capturing extreme tem
perature events across the spatial domain, with 30–50 % more suc
cessful detections (indicted by the mean successful number above each 
spatial map in Fig. 4).

Potential health benefits of early warning systems

By accurately forecasting extreme heatwaves and cold events, 
DeepMet can significantly strengthen early warning systems, enabling 
communities, especially vulnerable populations and better preparing 
more effectively. We assessed the added value of DeepMet over ECMWF 
for both types of events throughout 2023. As shown in Fig. 5, sub
stantial improvements in cold event prediction were observed across 
northern states, which are more frequently impacted by cold extremes. 
In contrast, the more significant improvements in heatwave prediction 
occurred in southern states, where extreme heat events are more 
common.

Compared to ECMWF forecasts, DeepMet enables more accurate 
identification of extreme weather events, potentially improving early 
warnings for an additional 600 million people-day during cold events 
and 3300 million people-day during heatwaves. This represents a 
30 % increase in population coverage during cold spells and a 60 % 
increase during heatwaves. Given the annual estimates of 700–1300 
heat-related deaths and 1200–2000 cold-related deaths in the U.S. 
[30–32], enhanced preparedness enabled by DeepMet such as timely 
healthcare interventions or emergency services could help prevent 
considerable deaths annually. These benefits become even more 
substantial as extreme heat and cold events intensify under a busi
ness-as-usual climate change scenario [32], potentially preventing 
additional premature deaths and avoiding associated economic 
losses each year, not to mention the additional risks posed to agri
culture, infrastructure, and broader societal systems. These findings 
highlight the tangible value of more accurate and timely sub-sea
sonal extreme temperature forecasts.

Discussion and conclusion

This study demonstrates a successful application of AI in extending 
the temporal scale of weather forecasts, an area that has traditionally 
posed significant challenges for numerical models. The key to 
DeepMet’s success lies in its ability to incorporate time-series memory 
into the prediction process, enabling the model to effectively constrain 
error propagation over time. Although traditional numerical methods 
retain memory from the previous time step, their atmospheric initial 
conditions rarely extend beyond 1–2 weeks due to chaotic dynamics. 
They also rely heavily on step-by-step progression, making them prone 
to cumulative errors. DeepMet leverages information from multiple 
previous time steps, thereby reducing the risk of runaway inaccuracies. 
This finding is particularly important for forecasting highly turbulent 
systems such as the atmosphere, highlighting that overcoming the 
limitations of long-range weather prediction may require moving be
yond purely mathematical approaches to models that incorporate his
torical memory. While DeepMet demonstrates strong performance over 
CONUS, its framework is generalizable and can be extended to other 
regions given adequate data support. Future applications should 
therefore consider not only global-scale modeling but also fine-scale, 

high-resolution implementations tailored to local climatic and ob
servational contexts.

In the current version of DeepMet, we use the previous 24 h of data 
as input. That is mainly because unlike global-scale models (e.g., large 
foundation models) that capture spatially extensive information at a 
single time point and rely less on historical context, regional models 
such as DeepMet must account for external influences from surrounding 
areas that evolve over time. Incorporating multiple historical time steps 
allows the model to implicitly capture these broader dynamical effects. 
While we initially expected that incorporating longer historical records 
(e.g., extending to 10 days) might improve model performance, our 
experiments indicated otherwise. In fact, extending the input window 
to 10 days often resulted in reduced accuracy (Figure S4), likely be
cause the most recent 24-hour data contains the most relevant pre
dictive signals for S2S forecasting, while older data contributes di
minishing value. Additionally, we did not include more than 24 h of 
high-resolution data due to the computational resource constraints 
(mostly due to RAM limitation), which would significantly reduce the 
effective size of the training dataset and compromise training effi
ciency. Therefore, the choice of window size represents a trade-off 
between predictive skill and computational efficiency. The optimal 
window size may also vary by region or season, depending on factors 
such as synoptic persistence or external forcing (e.g., teleconnections). 
Apparently, future work may explore methods to effectively in
corporate longer historical time series into the model to systematically 
optimize window size based on regional characteristics and seasonality, 
particularly when computational resources become available.

The success of DeepMet also challenges traditional perspectives in 
S2S forecasting. Conventional wisdom holds that long-term predictions 
require global-scale models, such as ECMWF, to capture the influence of 
large-scale atmospheric circulation across regions. Particularly, pre
vious studies have highlighted the importance of teleconnections and 
slow modes of variability such as the MJO and ENSO for predictability 
at S2S time scales. Though in regional scale model like DeepMet, the 
global effects may already be implicitly captured by the model through 
learning from historical information. Since large-scale impacts propa
gate into the target domain step by step, they are eventually reflected in 
related meteorological features within the domain. Thus, historical data 
(even at 24-hour intervals, but extendable to weekly scales) can help 
machine learning models capture and enhance the influence of remote 
drivers. Our results also demonstrate that a regional-scale S2S model 
can outperform global models even without explicitly representing 
global influences. This is probably because error propagation occurs not 
only temporally but also spatially. Errors originating outside the target 
domain can amplify and be transported into the region of interest, 
potentially degrading forecast accuracy. While global models are cap
able of capturing cross-boundary flows, they may also introduce addi
tional uncertainty from distant regions, which can limit their benefit. 
Moreover, global models often face a trade-off between resolution and 
spatial coverage, often allocating computational resources to areas that 
are not directly relevant to the target region. That said, this does not 
imply that boundary conditions are unimportant. In fact, our experi
ments indicate that incorporating simplified boundary condition in
formation improves forecast skill during the first two weeks (Figure S5). 
Additionally, for short-term forecasts (e.g., next-day prediction, one 
leading day), the global model ECMWF indeed performs better than 
DeepMet when compared against WRF (Figure S6-S7), which also 
supports the suitability of WRF as the reference dataset. While, our 
study focuses on the S2S forecast range, where ECMWF performance 
deteriorates more rapidly with lead time, while DeepMet maintains 
more stable performance over the full 45-day period. This trade-off 
between short-term accuracy and long-term stability explains why 
DeepMet eventually outperforms ECMWF at extended lead times. To 
ensure fairness, we also compared the results at the same coarse (1.5°) 
resolution as ECMWF forecasts and found consistent improvements by 
DeepMet across key metrics at S2S scales (Figure S8). This finding 
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suggests that observed improvements from ECMWF to DeepMet are not 
driven by resolution effects alone, and that the interpolation and re
solution differences do not substantially alter the main conclusions 
regarding DeepMet’s forecast skill. Apparently, while global context is 
useful for short-term predictions, it may be less critical or even coun
terproductive for longer-term S2S forecasting.

Another challenge to traditional thinking lies in the assumption that 
meteorological variables are highly interdependent and should be 
predicted simultaneously. However, our findings suggest that this ap
proach does not always yield better performance. Due to error propa
gation, inaccuracies in one variable can adversely affect the prediction 
of others. In contrast to other AI-based weather models that attempt to 
forecast multiple variables concurrently, DeepMet employs a single- 
variable prediction strategy. This allows the model to focus on learning 
the dynamics of each variable independently, without the need to 
balance competing priorities during optimization. It also enables the 

selection of more relevant 3D input features tailored to each specific 
variable (Table 1). Moreover, this modular approach enables parallel 
training across multiple GPUs, improving both efficiency and scalability 
while preserving task-specific accuracy.

We scaled the time series input to a daily resolution for S2S fore
casting to reduce error propagation across time steps. Additionally, 
using hourly data would require significantly more memory, which 
limits the amount of training data that can be processed and ultimately 
hinders model performance. In our experiments, increasing the tem
poral resolution of predictions from daily to 3-hourly, or 6-hourly in
tervals which did not yield meaningful improvements (Figure S9). 
Therefore, daily resolution remains a practical and effective choice, 
especially for S2S forecasts where long lead times are the primary focus.

While large GPU resources can enhance model performance, our 
study demonstrates the feasibility of generating fine-scale weather 
forecasts using limited computational resources. This makes the 

Fig. 5. Estimated benefits of DeepMet in identifying extreme heatwaves and cold events during 2023. 
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approach more realistic and accessible. Importantly, the method well- 
aligned with localized policy needs for protecting public health, agri
culture, and infrastructure. Looking ahead, there is substantial potential 
to further enhance forecasting skill, both in accuracy and scope by 
expanding applications to other critical variables such as precipitation, 
wildfires, and floods, ultimately contributing to the protection of more 
lives.

Incorporating additional future-relevant information such as slowly 
varying or accurately predictable variables can further improve fore
casting performance. For example, incorporating improved re
presentations of time-series day for slowly varying geophysical inputs, 
such as leaf area index, vegetation cover, albedo, downward shortwave 
radiation, into DeepMet may lead to noticeable improvements in pre
dictive accuracy (Figure S10). The current results can be viewed as a 
conservative (lower-bound) estimate of DeepMet’s performance relative 
to ECMWF. There is no doubt that AI will play an increasingly vital role 
in extreme weather prediction, especially at the S2S scale, which con
tinues to pose significant challenges for traditional numerical models.
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