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Abstract

The increasingly unpredictable and extreme weather patterns under a warming climate underscore
the urgency of accurate regional assessments of future drought risk. This study evaluates the
projected drought evolution in the contiguous United States under the high-emission shared
socioeconomic pathway 5-8.5 climate scenario for the coming decades. Using a multi-model
ensemble of six Coupled Model Intercomparison Project Phase 6 global climate models combined
with dynamical downscaling techniques, we analyzed near-term (2020-2039) and mid-term
(2040-2059) drought patterns using the self-calibrating palmer drought severity index

(ScPDSI), the standardized precipitation index (SPI-12), and the Standardized Precipitation-
Evapotranspiration Index (SPEI-12). Results reveal a widespread increase in abnormally dry (D0)
and moderate drought (D1) conditions, particularly in urban areas, while severe (D2), extreme
(D3), and exceptional (D4) droughts are expected to become less common in many regions.
Meanwhile, persistent and intensifying droughts are projected in the western and southwestern
U.S., driven by long-term soil moisture deficits. The ScPDSI projects that 1.1 million urban
residents will be affected by DO conditions in 2050, while SPI-12 suggests a decrease in the total
affected populations after 2040. ScPDSI indicates prolonged droughts in the West, and SPI-12
captures transient variability. Although the total drought-exposed population is expected to
decrease, urban areas will continue to bear a greater burden, particularly for mild droughts (DO,
D1). These findings highlight a shift toward more frequent mild droughts, fewer severe droughts,
and persistent drying in the Southwest, emphasizing the need for region-specific adaptation

strategies.

1. Introduction

Drought is one of the most persistent and disruptive
climate hazards across the contiguous United States
(CONUSs), with far-reaching consequences for water
availability, agriculture, public health, and economic
stability (Heim 2002, Leeper et al 2022, Sugg et al
2020, Zhang et al 2020). Recent events—such as the
2000, 2002, 2006, and 2011-2013 droughts—have

© 2025 The Author(s). Published by IOP Publishing Ltd

become more intense and spatially variable (Rippey
2015), heightening risks of wildfires, crop losses,
water shortages, and health impacts concerns (Covich
et al 2009, Chang et al 2016, Littell et al 2016, Chiang
et al 2018, Falloon et al 2018). Drought-related dis-
asters have caused more than $31 billion in dam-
ages in the U.S. between 1980 and 2023 (Smith 2020),
underscoring the need of improving drought predic-
tion and management.
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Drought indices offer quantitative tools for char-
acterizing different aspects of drought, including pre-
cipitation deficits, evapotranspiration, and soil mois-
ture (Mishra and Singh 2010). The standardized pre-
cipitation index (SPI-12) over a 12 month scale (SPI-
12) remains a widely used indicator of long-term met-
eorological drought, due to its simplicity and com-
parability across regions (McKee et al 1993, Hu et al
2015). It is independent of the magnitude of mean
precipitation, which makes it comparable across dif-
ferent climate zones and time scales (Agnew 2000, Li
et al 2020). However, SPI-12 does not account for
temperature-driven water loss, limiting its effective-
ness in warming regions (Hoffmann et al 2020). The
Standardized Precipitation Evapotranspiration Index
(SPEI-12) addresses this by incorporating potential
evapotranspiration (PET), offering a more climate-
sensitive measure of drought (Vicente-Serrano et al
2010). However, its sensitivity depends on how PET is
calculated. While the Thornthwaite method is com-
monly used, it often overestimates drought severity
in warmer conditions due to its reliance on tem-
perature alone (Hayes et al 2012, Begueria et al
2014). In contrast, the Penman—Monteith method—
accounting for solar radiation, humidity, and wind
speed—offers a more physically grounded alternative
(Zhao et al 2023).

In addition to precipitation and temperature, soil
moisture dynamics are critical for assessing drought
severity. The self-calibrating palmer drought sever-
ity index (ScPDSI) accounts for soil moisture bal-
ance and local water-holding capacity, making it suit-
able for hydrological and agricultural drought assess-
ments (Palmer 1965, Dai and Zhao 2017, Zhong et al
2019). While SPI and SPEI are more sensitive to short-
term variability, SCPDSI offers insight into long-term
drought persistence (Karl 1983). Soil moisture-based
indices have been shown to more effectively capture
hydrological and agricultural drought risk than those
based on precipitation alone (Vicente-Serrano et al
2011, Wang et al 2017a). The U.S. Drought Monitor
(USDM) also combines SPI, PDSI, and other met-
rics to support drought classification and decision-
making (Svoboda et al 2002).

While historical precipitation and temperature
trends are well documented for most of the U.S.
(McEnery et al 2005), future drought projections
require high-resolution climate models that capture
fine-scale atmospheric and land-surface interactions.
The Coupled Model Intercomparison Project Phase
6 (CMIP6) global climate model (GCM) outputs
provide standardized future projections, incorpor-
ating shared socioeconomic pathways (SSPs) with
representative concentration pathways to assess cli-
mate impacts under different radiative forcing levels
(Eyring et al 2016, O’Neill et al 2016). The SSP5-8.5
scenario is widely applied to explore the upper-bound

L Zhang et al

climate impacts. However, the coarse resolution
(~110 km) and inherent biases of GCM outputs
limit their applicability for regional analyses (Hao
et al 2018b, Miilmenstiadt and Wilcox 2021). Also,
high-resolution climate projections are essential for
regional drought assessments, especially in topo-
graphically complex areas such as the western U.S.
(Ashfaqetal 2016). To address this, downscaling tech-
niques are employed to improve resolution (Raju and
Kumar 2020, Qiu et al 2022). Statistical downscal-
ing is efficient but depends on empirical relation-
ships that may break down in future climates. In
contrast, dynamical downscaling explicitly resolves
regional climate processes, such as orographic precip-
itation and land—atmosphere interactions (Coppola
et al 2021, Rastogi et al 2022). In this study, the
regional climate model version 4 (RegCM4) is used to
refine CMIP6 projections to 4 km resolution, coupled
with bias correction using daymet V4 to improve pre-
cipitation and temperature accuracy.

This study provides a comprehensive assessment
of projected drought trends across CONUS by integ-
rating three key drought indices (SPI-12, SPEI-
12, and ScPDSI) to capture precipitation-driven,
temperature-driven, and soil moisture-based drought
dynamics. By incorporating high-resolution dynam-
ical downscaling with bias correction, we improve
the spatial resolution and reliability of future drought
projections. Our regional climate-zone-based ana-
lysis and multi-model ensemble approach allows for
a detailed evaluation of local drought variations.
Additionally, by assessing the future drought expos-
ure of urban and rural populations, we also eval-
uate population exposure to drought, underscoring
regional disparities in risk and informing adaptation
strategies.

2. Methods and data

2.1. Drought indices and classification

To evaluate the projected drought conditions, we
apply three established drought indices: SPI-12, SPEI-
12, and ScPDSI. SPI-12, based solely on precipita-
tion, is commonly used for meteorological drought
analysis, while SPEI-12 extends this approach by
incorporating PET to account for temperature-driven
drought stress. Both indices are computed at a
12 month scale to effectively capture prolonged pre-
cipitation deficits that influence agricultural produc-
tion, groundwater recharge, and reservoir storage.
This time scale offers a balance between shorter-term
variability (e.g. SPI-3, which primarily detects met-
eorological droughts) and longer-term trends (e.g.
SPI-24, which may over-smooth interannual fluc-
tuations), align with widely used methodologies in
drought research and ensures comparability with pre-
vious studies (Heim 2002, Vicente-Serrano et al 2010,
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Label Category SPI/SPEI (USDM) ScPDSI (NOAA)
W4 Exceptional wet 2.0 or greater 5.0 or greater
W3 Extreme wet 1.6-2 4.0-5.0

w2 Severe wet 1.3-1.6 3.0-4.0

W1 Moderate wet 0.8-1.3 2.0-3.0

WO Abnormally wet 0.5-0.8 1.0-2.0

N Near normal —0.5-0.5 —1.0-1.0

DO Abnormally drought —0.8to —0.5 —2.0to—1.0
D1 Moderate drought —1.3t0 —0.8 —3.0to —2.0
D2 Severe drought —1.6to —1.3 —4.0to —3.0
D3 Extreme drought —2.0to —1.6 —5.0to —4.0
D4 Exceptional drought —2.0 or less —5.0 or less

Wang et al 2017b). ScPDSI, which incorporates soil
moisture balance, is suited to assessing long-term
hydrological and agricultural drought. All indices
are standardized against the 1980-2019 baseline to
ensure consistency in drought characterization and
allow consistent comparisons between historical and
future conditions. Formulations and methodological
details are provided in supplementary text S1 and
equations S1-S4. Drought classification follows the
USDM and NOAA thresholds (Svoboda et al 2002),
with categories DO—D4 representing increasing sever-
ity levels (table 1). ScPDSI is used in spatial analyses
given its sensitivity to long-term soil moisture anom-
alies, while SPI-12 and SPEI-12 offer insight into
short-term precipitation and temperature effects.

2.2. Dynamical downscaling and bias correction

To improve spatial resolution, we apply dynam-
ical downscaling through RegCM4, which refines
coarse CMIP6 GCM outputs (~110 km) to a
high-resolution 4 km grid (Rastogi et al 2022).
This technique captures fine-scale atmospheric
processes—such as orographic precipitation and
land—atmosphere interactions—that are often mis-
represented in raw GCMs (Giorgi 2019, Coppola et al
2021). In contrast, statistical downscaling relies on
empirical relationships between large-scale climate
variables and local observations, which may become
less reliable under future climate conditions. Also,
dynamical downscaling is particularly valuable in
topographically complex regions such as the western
U.S. (Ashfaq et al 2016). To correct systematic GCM
biases, we use quantile mapping with daymet V4—a
1 km gridded observational dataset (Thornton et al
2022). This procedure improves the representation of
extremes in semi-arid and mountainous regions and
ensures consistency with historical climate conditions
(Rastogi et al 2022). The combination of dynamical
downscaling and bias correction enhances the accur-
acy of drought indices, particularly for indices that
incorporate temperature-driven evapotranspiration,
such as SPEI and ScPDSI. PET was estimated using

the VIC model and the Penman—Monteith method
(Zhao et al 2023). Methodological details, including
PET estimation, model selection, and downscaling
evaluation, are provided in supplementary texts S1—
S3 and table S1. The dataset spans a historical baseline
(1980-2019), near-term (2020-2039), and mid-term
(2040-2059) period to align with IPCC-relevant cli-
mate planning horizons and facilitates comparisons
across studies (Rastogi et al 2022). And the data are
aggregated by the National Centers of Environmental
Information (NCEI) climate regions (figure S1) to
support regional trend analysis.

2.3. Population exposure analysis

To evaluate the potential population exposure to
drought, we used the Global 1 km downscaled pop-
ulation base year and projection grids dataset (SSPs,
Revision 01), which provides urban, rural, and total
population projections from 2000 to 2100 in 10 year
intervals (Jones and O’Neill 2016, Jones et al 2020).
Urban and rural classifications follow the Global
Human Settlement Layer and census-based defini-
tions, while rural areas include all non-urban grid
cells. This enables alignment between demographic
patterns and drought severity projections. While this
study focuses on SSP5-8.5 to assess the upper bound
of future drought severity, future work could exam-
ine alternative warming thresholds (e.g. 1.5 °C, 2 °C)
to capture broader uncertainties. Population grids
were resampled to match the 4 km resolution of
the drought indices. This integration of climate and
demographic data allows for a spatially explicit assess-
ment of population vulnerability across CONUS. A
detailed description of the methods used for regional
aggregation and population exposure analysis is avail-
able in supplementary text S4.

3. Results

To assess regional drought characteristics, we ana-
lyzed SPI-12, SPEI-12, and ScPDSI across the CONUS
from 1980 to 2059 (figure 1). SPI-12 indicates a pro-
longed dry period between 1980 and the early 2000s,
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Figure 1. Temporal evolution of drought conditions across the CONUS based on SPI-12, SPEI-12, and ScPDSI. * Note: Y-axis for
ScPDSI differs due to its unique index scale.

with frequent drops below —1, reflecting persistent
precipitation deficits. In contrast, SPEI-12 captures
shorter drought episodes, as increased evapotran-
spiration offsets some precipitation deficits. SCPDSI
drops below —5 during major droughts in the late
1990s and early 2000s, indicating deep and prolonged
soil moisture depletion. Between 2020 and 2059, the
indices reveal greater interannual variability, with dif-
fering directional trends. SPI-12 indicates a trend
toward wetter conditions after 2040, marked by more
frequent positive anomalies. While SPEI-12 continues
to exhibit strong variability, with droughts intensify-
ing during warmer years due to increased evapotran-
spiration. ScPDSI shows that the gradual soil mois-
ture recovery in parts of the region reaches values
above +5 in some cases after 2030. The contrast-
ing behavior of the indices underscores their comple-
mentary strengths in capturing precipitation, temper-
ature, and soil moisture dynamics.

Dynamical downscaling enhances the utility of
GCM outputs by incorporating localized atmospheric
processes and land—surface interactions, thereby
improving the resolution and realism of regional
hydroclimate projections. This approach is partic-
ularly valuable for assessing drought risk, which is
influenced by complex interactions between precip-
itation, temperature, and soil moisture. To capture

these diverse dimensions, figure 2 illustrates projec-
ted regional shifts in drought frequency across the
CONUSs for the near-term (2020-2039) and mid-
term (2040-2059), relative to the historical baseline
(1980-2019), based on SPI-12, SPEI-12, and ScPDSI.

The three drought indices show regionally diver-
gent yet complementary patterns across the CONUSs,
reflecting their sensitivities to precipitation vari-
ability, temperature-driven evaporative demand,
and cumulative soil moisture deficits, respectively.
To facilitate regional comparisons, we average the
combined D1 and D2 proportions across each time
period. In the Southwest, including California,
Nevada, Arizona, and New Mexico, SPI-12 shows a
decline of 5.70 percentage points in D1-D2 drought
prevalence from the historical to near-term period
and a further 7.40 points decline in the mid-term,
indicating a reduction in short-term precipitation
deficits. ScPDSI, by contrast, projects increase of
15.45 and 12.10 points across the same two peri-
ods, suggesting intensifying long-term drying. SPEI-
12 results fall between these two, with respect-
ive increases of 1.35 and 2.40 points, likely due to
enhanced evaporative demand under rising temper-
atures despite stable precipitation patterns. In the
Northeast, both SPI-12 and SPEI-12 project substan-
tial drought relief, with SPI-12 showing reductions of
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Figure 2. Regional variations in drought probability across the CONUS for the near-term (2020-2039) and mid-term
(2040-2059) relative to the historical baseline (1980-2019).

Difference (%)

14.45 and 15.95 points, and SPEI-12 showing declines
of 9.65 and 12.95 points across the two future peri-
ods. Meanwhile, ScPDSI indicates relatively stable
long-term moisture conditions, with an increase in
near-normal conditions and a decline in both dry and
wet extremes. In the Northern Rockies, SPI-12 pro-
jects moderate declines of 5.95 and 7.80 points, while
SPEI-12 shows increases of 2.65 and 5.10 points, and
ScPDSI indicates 5.40 points increase in combined
D1 and D2 frequencies by the mid-term. In Ohio
Valley, SPI-12 suggests decreases of 7.35 and 7.80
points, SPEI-12 shows smaller reductions of 1.40
and 3.50 points, and ScPDSI indicates a shift from
a 9.80-point reduction in D1 in the near-term to a
4.17-point increase in D2 in the mid-term, reflecting
a transition toward long-term drying. Overall, SPI-12
frequently indicates decreasing drought severity due
to its reliance on precipitation inputs alone, while
ScPDSI captures persistent soil moisture deficits that
develop over time. SPEI-12 reflects the compounding
effects of both temperature and precipitation, often
yielding intermediate outcomes. These divergent pro-
jections reinforce the value of using multiple indices
to provide a more complete understanding of future
drought risk across different regions and timescales.

mate trends across CONUS from the 1980s—2050s,
with increasing drought in the West and increasing
wetter conditions in the East. The 10th percentile

Figure 3 shows a divergent regional trend in cli-

ScPDSI maps, which capture extreme dry conditions,
indicate that drought was historically confined to the
Southwest and Southern Great Plains in the 1980s but
has gradually expanded. By the 2000s, severe drought
(D3-D4) was widespread across the Southwest, Great
Plains, and parts of the Midwest, with California,
Nevada, Arizona, and New Mexico showing persist-
ent drying trends. From the 2020s to the 2050s, this
pattern intensifies, locking the Southwest and Great
Plains into prolonged drought cycles and increasing
risks to agriculture, water resources, and wildfires.
In contrast, the Northeast and Great Lakes remain
relatively resilient, while the Southeast shows emer-
ging drought risks, particularly in Texas, Alabama,
Georgia, and Florida.

The median ScPDSI maps, which reflect typ-

ical moisture conditions for each decade, show a
continued shift toward drier baseline conditions in
the West and Great Plains. In these areas, aver-
age conditions increasingly fall within the range
of moderate to severe drought (D1-D2), indicat-
ing that dry conditions previously seen as extreme
are becoming the new normal (figure 3). However,
the Northeast and Great Lakes show a gradual shift
in the opposite direction, with baseline conditions
becoming wetter by the mid-century. The Southeast
and Midwest show greater variability, with alternat-
ing dry and wet periods, making long-term projec-
tions more uncertain. Meanwhile, the 90th percentile
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Figure 3. Decadal changes in 10th, median, and 90th percentile ScPDSI across CONUS (1980s—2050s).
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ScPDSI maps, which represent extreme wet periods,
indicate that the Northeast, Great Lakes, and Ohio
Valley are experiencing a sharp increase in extreme
wet events (W3-W4), with intense precipitation and
flood risks becoming more pronounced from the
2020s onward. The Southeast, particularly along the

Gulf Coast, also sees an increase in extreme wet con-
ditions, likely associated with intensifying tropical
storms and hurricanes. In contrast, the Southwest
and Great Plains experience a notable decrease in
extreme wet periods, reinforcing concerns that these
regions are not only drying out but also losing their
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ability to recover from drought through periodic wet

variability, temperature-driven evapotranspiration,
periods.

and long-term soil moisture trends on future drought
Figure 4 presents historical and projected changes  conditions under the SSP5-8.5 scenario. The stacked
in the percentage of CONUS affected by different bar plots (figures 4(a), (c) and (e)) show clear tem-
drought categories (D0-D4) from 1980 to 2059, poral trends in drought-affected land area. In SPI-12
based on SPI-12, SPEI-12, and ScPDSI indices. These  (figure 4(a)), the coverage of D1 and D2 decreases
visualizations reveal the influence of precipitation from the 1980s onward, with peaks aligning with
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major droughts in the late 1980s, early 2000s, and
mid-2010s. D3 and D4 remain limited in extent and
are not projected to expand significantly, while D0
remains stable, reflecting ongoing short-term pre-
cipitation fluctuations. Conversely, SPEI-12 accounts
for temperature-driven drying, shows greater year-to-
year variability in D1 and D2, indicating that increas-
ing evapotranspiration will intensify drought severity
even in years without significant precipitation defi-
cits (figure 4(c)). The area affected by D3 and D4
remains low but sporadic, with peaks indicating years
of widespread drying due to extreme heat. ScPDSI
presents a different trend, with DO and D1 cover-
age increasing significantly after 2020, while D2-D4
remaining relatively stable (figure 4(e)). This indic-
ates a shift towards prolonged dry conditions affect-
inglarge portions of the CONUS, rather than episodic
severe drought events.

The box plots further explain the statistical dis-
tributions across three time periods: 1981-2019
(historical baseline), 2020-2039 (near-term future),
and 2040-2059 (mid-term future). For SPI-12, the
median D1 and D2 areas decrease in future periods
with a reduced interquartile range (IQR), indicat-
ing a more consistent decrease in moderate drought
coverage (figure 4(b)). However, the whiskers (5th—
95th percentiles) and outliers indicate that extreme
drought years with widespread impacts remain pos-
sible despite the overall downward trend. D3 and
D4 continue to affect only a small percentage of
the land area, reinforcing that SPI-12-based pro-
jections do not suggest an expansion of the most
severe drought categories. In contrast, SPEI-12 shows
stable median D1 and D2 coverage but with a wider
IQR, indicating increased variability in future pro-
jections (figure 4(d)). The presence of more out-
liers in the D2-D4 categories suggests that while
overall drought coverage may not increase signific-
antly, extreme heat-driven drying events will lead to
years of widespread severe drought. Unlike SPI-12,
SPEI-12 shows that moderate to severe droughts may
not decrease but will fluctuate more intensely from
year to year. SCPDSI projects a clear increase in the
median percentage of land affected by DO and D1
in both future periods, accompanied by a larger IQR
(figure 4(f)). This indicates that more of the CONUS
will experience persistent abnormally dry or mod-
erate drought conditions. The area affected by D2
remains relatively stable in terms of median values
across the three time periods. However, some indi-
vidual years—particularly around 2030 and 2050—
show markedly higher D2 coverage than most his-
torical years (figure 4(e)), consistent with increased
interannual variability. These are captured as outliers
in the box plot (figure 4(f)) and reflect episodic but
widespread severe drought events. It is important to
note that these plots represent the spatial extent of
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drought in a given year, and do not reflect the fre-
quency of drought occurrence at any specific location
over time. These projections are consistent with long-
term soil moisture deficits expected under a warming
climate, where precipitation may become less effect-
ive in maintaining soil moisture balance.

The U.S’s highly urbanized population—nearly
80% living in cities—faces disproportionate drought
exposure. By integrating drought classifications (D0O-
D4) from the ScPDSI, SPI-12, and SPEI-12 with
gridded population projections, we find that urban
areas consistently bear greater drought impacts than
rural areas, particularly for the milder categories
(D0-D1). Exposure peaks around 2030-2040 and
declines towards 2050, with notable differences across
indices. Under SPI-12, drought exposure peaks at
2.7 million people in 2030 and drops to 800 000
by 2050. In contrast, ScPDSI indicates more pro-
longed exposure, with 3.6 million affected in 2030
and 1.1 million still impacted by 2050. These dif-
ferences reflect how precipitation-based (SPI-12),
temperature-sensitive (SPEI-12), and soil moisture-
driven (ScPDSI) indices yield different drought pro-
jections. Historically, urban populations have been
more vulnerable to drought than rural areas, and
this trend is expected to continue under SSP5-8.5
(figure 5). In 2010, 6.6 million urban residents exper-
ienced D0-D4 droughts compared to 1.1 million
rural residents (SPI-12). ScPDSI estimated 3.5 mil-
lion affected, compared to 2.1 million under SPI-12,
highlighting differences in index sensitivity. By 2030,
urban exposure peaks at 6.4 million under SPI-12 and
3.6 million under ScPDSI. Although numbers decline
by 2050, ScPDSI continues to show more prolonged
exposure, reinforcing concerns about persistent soil
moisture deficits.

For DO conditions under SPI-12, urban drought
exposure rises from 1.76 million in 2010 to a peak
of 2.46 million in 2030, then declines to 0.96 mil-
lion by 2050. During the same period, rural expos-
ure decreases from 0.35 million to just 0.1 million.
ScPDSI estimates an even higher DO exposure, with
3.2 million urban residents affected in 2030 and
1.1 million in 2050. Moderate drought (D1) follows
a similar pattern, peaking at 1.24 million urban res-
idents in 2030 (SPI-12) and decreasing to 0.14 mil-
lion in rural areas by 2050. The ScPDSI estimates are
more persistent, with urban D1 exposure at 2.5 mil-
lion in 2030 and 1.3 million in 2050, reinforcing
the role of long-term soil moisture deficits in sus-
taining droughts. For severe droughts (D2-D4), the
decline is more pronounced. D2 affects 420 000
urban residents in 2030 (SPI-12) and 1.4 million in
ScPDSI, but drops to 63 000 (SPI-12) and 437 000
(ScPDSI) by 2050. D3 peaks at 84 000 (SPI-12) and
101 000 (ScPDSI) in 2030, declining to 28 000 (SPI-
12) and 90 000 (ScPDSI) by 2050. D4 remains the
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least affected category, with urban exposure slightly
increasing from 1321 in 2030 to 5141 in 2050 (SPI-
12), while ScPDSI projects a larger but still small
urban D4 population of 9 000 by 2050. These findings
reinforce the persistent vulnerability of urban popu-
lations to long-term drought exposure under climate
change (see supplementary figure S2 for population
growth trends in urban and rural areas).

4. Discussion

We examined future drought dynamics across
the CONUS wusing three complementary
indices—SPI-12, SPEI-12, and ScPDSI—which
reflect precipitation variability, temperature-driven

evapotranspiration, and long-term soil moisture bal-
ance, respectively. The results show divergent trends:
SPI-12 and SPEI-12 point to interannual fluctuations
and a decrease in drought-affected areas by mid-
century, while ScCPDSI projects persistent soil mois-
ture deficits, particularly in the Southwest. This diver-
gence highlights the value of using multiple drought
indices to capture the full range of drought processes
under climate change. One limitation of this analysis
is the use of a six-model ensemble under a single scen-
ario (SSP5-8.5), with 10 year time slices that limit the
reliability of extreme drought (D3-D4) projections.
While SPI-12 and SPEI-12 show a median decline in
D3-D4 droughts, ScPDSI projects that some regions
may still face extended dry periods after 2050. This
highlights that while the number of extreme droughts
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may decrease, persistent soil moisture deficits could
continue to threaten water resources and agricul-
ture. Expanding multi-scenario and multi-model
ensembles would improve projection and better
quantify future drought extremes. While our results
diverge in some areas from coarse-resolution CMIP6
studies, this is expected given the additional process-
level detail captured through dynamical downscal-
ing. RegCM4 preserves large-scale circulation signals
from the driving GCMs while explicitly resolving
regional features such as terrain-driven precipitation,
mesoscale convection, and land—atmosphere inter-
actions. These localized processes strongly influence
drought behavior but are often absent in coarse mod-
els. The divergence is not due to model pre-selection.
The six GCMs used were selected based on data avail-
ability, historical performance, and representation of
a wide range of climate sensitivities (supplement text
S2). Our findings therefore reflect physically mean-
ingful improvements in regional drought representa-
tion rather than methodological inconsistencies.

We assessed projection reliability by examining
the effects of dynamical downscaling, which expli-
citly resolves fine-scale climate processes in contrast
to statistical approaches. This approach is partic-
ularly important in topographically complex areas
like the western U.S., where GCMs often under-
estimate local precipitation variability and con-
vective processes. Bias correction using Daymet
V4 helped reduce systematic biases in temperat-
ure and precipitation, thereby improving the per-
formance of temperature-sensitive drought indices
such as SPEI and ScPDSI. The enhanced spatial
resolution provides a more accurate representa-
tion of temperature-driven drought patterns. While
raw GCM-based projections smooth out fine-scale
drought patterns, our downscaled dataset provides a
more detailed spatial representation of drought per-
sistence and intensity across different climate zones.
Despite improvements in downscaling, some biases
persist. While precipitation biases in the Southwest
have been reduced compared to raw GCM outputs,
there is still a slight underestimation of extreme
precipitation events, indicating the need for further
refinement in hydrological applications. Similarly,
temperature biases in RegCM4-based datasets were
lower than those in raw GCMs, improving the
reliability of temperature-sensitive drought indices.
Opverall, these findings demonstrate the usefulness
of dynamical downscaling in improving the accur-
acy of regional drought projections. Although our
downscaled ensemble enhances the spatial realism
of drought projections, it does not eliminate uncer-
tainty, which remains a fundamental aspect of future
climate assessments. Model agreement improves in
regions with strong geographic controls, such as the
Southwest, while greater spread persists in areas like
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the Midwest. This reflects both inherited variability
from GCMs and methodological differences intro-
duced during downscaling. Prior studies have shown
that different techniques can produce notably differ-
ent estimates of hydroclimatic extremes (Rastogi et al
2022). Figure 3 illustrates this spread using the 10th,
50th, and 90th percentiles. These results emphasize
the value of regional modeling while underscoring the
need for broader ensemble exploration.

Several recent studies using CMIP6 models have
projected widespread intensification of drought
severity under future high-emission scenarios based
on SPEI indices (Zhao and Dai 2022, Zhou et al
2023, Niu et al 2025). While our findings may appear
to differ, these discrepancies are primarily due to
differences in methodological design. Many of the
referenced studies use global-scale SPEI-3 derived
from raw CMIP6 outputs at coarse spatial resolu-
tions, which tend to emphasize short-term drought
responses to warming. In contrast, our analysis
applies bias-corrected, dynamically downscaled pro-
jections at 4 km resolution across the CONUS and
focuses on SPEI-12, which reflects seasonal-to-annual
water balance more relevant to long-term hydrolo-
gical and agricultural impacts. As shown in figure S3,
longer accumulation periods like SPEI-12 smooth
short-term fluctuations and better capture persistent
drought signals, while SPEI-3 displays more frequent
and abrupt variability. Additionally, our indices are
standardized to a consistent 1980-2019 baseline
across the same spatial domain, reducing inconsist-
encies that may arise from global reference periods.
As aresult, our findings highlight increasing mild-to-
moderate drought, particularly in the Southwest and
urban areas, with fewer extreme drought events in
some regions by mid-century. These results comple-
ment, rather than contradict, broader global assess-
ments and underscore the importance of spatial res-
olution, drought timescale, and reference period in
shaping projected drought trajectories.

Our findings align with previous studies show-
ing a decline in drought in parts of CONUS, particu-
larly the Upper Midwest and Southeast, due to projec-
ted increases in precipitation (Xue and Ullrich 2022,
Chen and Ford 2023). In contrast, drought conditions
in the Southwest and Western U.S. (e.g. New Mexico,
Arizona, California) are expected to worsen as rising
temperatures and evapotranspiration intensify soil
moisture deficits (Heim 2017, Leeper et al 2022,
Rastogi et al 2023). The role of rising temperatures in
drought indices varies depending on the PET calcu-
lation method. SPEI explicitly accounts for temperat-
ure through PET and often employs the Thornthwaite
method, which is highly sensitive to warming but does
not consider vegetation responses to elevated CO,
levels. ScPDSI incorporates temperature effects indir-
ectly through soil moisture balance but does not fully
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reflect CO,-driven changes in PET. While Penman—
Monteith PET is physically robust, it excludes CO,-
induced stomatal closure, which may lead to overes-
timation of future drying (Yang et al 2019). Future
research should explore CO,-sensitive PET models to
better capture plant water use efficiency and drought
severity under increasing CO, levels.

Although the total drought-affected population is
projected to decrease by 2050, urban areas will remain
disproportionately burdened by mild and moderate
droughts due to their higher population density and
location in persistently dry regions. However, projec-
tions vary across the drought indices: SPI-12 estim-
ates a decrease in affected population from 2.7 mil-
lion in 2030 to 0.8 million in 2050, while ScPDSI
suggests a more prolonged impact, with 3.6 mil-
lion affected in 2030 and 1.1 million in 2050. This
suggests that while short-term precipitation variab-
ility may provide relief in some regions, longer-term
soil moisture depletion remains a key concern. The
findings emphasize the socioeconomic vulnerabil-
ity of urban populations, particularly disadvantaged
groups, in drought-prone areas (Liggett 2023). To
address persistent drought risks, effective adaptation
strategies are essential—such as improving water con-
servation, investing in resilient urban infrastructure,
and expanding water reuse technologies. It is also
important to acknowledge that population expos-
ure estimates are based on a single socioeconomic
scenario (SSP5-8.5), which introduces its own uncer-
tainty. Future demographic shifts, migration, and
policy changes could lead to alternative exposure out-
comes. While SSP5 provides a high-growth, high-
emission baseline for stress-testing drought vulner-
ability, incorporating multiple SSPs in future work
could better constrain the uncertainty range in pro-
jected human exposure to drought.

From an agricultural perspective, the indices
reveal significant risks associated with shifting
drought patterns. SPI-12 indicates a long-term trend
toward reduced drought severity after 2040 (figure 1),
suggesting fewer prolonged precipitation deficits,
which may reduce water stress in some regions but
pose challenges for rainfed agriculture that depends
on consistent moisture availability (Harp and Horton
2022). In contrast, ScPDSI predicts persistent soil
moisture deficits in the Southwest, where drought
risk remains high even by 2050. Projected increases
in precipitation may not fully offset soil moisture
deficits, which could continue to affect crop resili-
ence and yields (Ficklin et al 2015). More intense but
less frequent precipitation events could complicate
irrigation planning and disrupt crop schedules, even
in regions projected to become wetter (Leeper et al
2022, Rastogi et al 2023). Agricultural systems must
prepare for both more frequent mild droughts and
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the increased baseline water stress they impose (Wahl
etal 2022).

To calculate PET, this study used the Penman—
Monteith method with the VIC hydrological model
and bias-corrected GCM output, which is widely
accepted for hydrological studies (Lang et al 2017,
Goh et al 2021). The VIC-derived PET was sub-
sequently used as the climatic input for the SPEI and
ScPDSI calculations, thereby improving the physical
realism of the index. Although ScPDSI has been cri-
ticized for its simplified soil moisture parameteriza-
tion (Vicente-Serrano et al 2011), the use of physically
based and validated PET helps to improve the cred-
ibility of its drought projections. The bias-corrected
RegCM4 inputs driving the VIC model have been
demonstrated to significantly improve temperature
and precipitation representation across CONUS, par-
ticularly in the Southwest (Rastogi et al 2022), see also
in supplementary text S3). However, limitations such
as temporal uncertainties and energy balance closure
issues may introduce biases in drought index calcula-
tions (Hao et al 2018a). Additionally, the modifiable
areal unit problem complicates results, even when
dividing the CONUS into NCEI climate regions to
align with previous studies (Jelinski and Wu 1996,
Ashfaq et al 2016). In addition, different drought
classification thresholds, such as —0.5 for SPI/SPEI
and —1 for ScPDS], influence the areas and pop-
ulations identified as drought-affected (Maule et al
2013, Nam et al 2015, Chivangulula et al 2023).
Although our study follows conventional classific-
ation criteria, nonparametric methods offer a con-
sistent framework for comparing drought indices
across variables, improving cross-index comparab-
ility (Farahmand and AghaKouchak 2015). These
methodological challenges emphasize the need for
standardized approaches to improve consistency and
reliability in drought assessments.

5. Conclusion

This study presents a high-resolution, multi-model
assessment of future drought trends across CONUS
and their population impacts under the SSP5-8.5
scenario. The results reveal a growing regional dispar-
ity. While areas like the Upper Midwest and Northeast
may see fewer droughts due to increased precipit-
ation, the Southwest and Western U.S.—including
New Mexico, Arizona, and California—are projected
to face persistent and intensifying droughts driven
by rising temperatures and long-term soil mois-
ture deficits. By integrating multiple drought indices
(SPI-12, SPEI-12, and ScPDSI), this study high-
lights the need to capture both short-term precip-
itation variability and long-term hydrological stress
to fully understand evolving drought risks. Although
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the total population affected by drought is expec-
ted to decrease by mid-century, urban areas remain
disproportionately vulnerable, especially to mild-to-
moderate drought (D0-D1). For example, SPI-12
estimates that 0.96 million urban residents will face
DO conditions by 2050—down from 1.76 million
in 2010. In contrast, ScPDSI projects more pro-
longed exposure, with 3.2 million affected in 2030
and 1.1 million in 2050. Urban expansion in drought-
prone regions like the Southwest and Southern
California may heighten socioeconomic vulnerab-
ility. Addressing these challenges requires targeted
strategies—such as resilient water infrastructure, sus-
tainable irrigation, and drought-tolerant agriculture.
Future research should incorporate CO,-responsive
PET models and dynamic vegetation feedback to bet-
ter capture plant physiological responses under cli-
mate change. It is important to recognize that the
study is based on a relatively small ensemble of
six models under a single climate scenario (SSP5-
8.5), with drought trends analyzed over 10 year time
slices. While the findings offer valuable insights into
regional drought trends, the limited sample size con-
strains the detection of robust trends in extreme
events. Future research using larger model ensembles,
multiple scenarios, and longer timeframes is needed
to strengthen the robustness of projections.
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